Frequency Control of a Slow Oscillatory Network by a Fast Rhythmic Input: Pyloric to Gastric Mill Interactions in the Crab Stomatogastric Nervous Systema
EVE MARDER
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
E-mail: [email protected]
Search for more papers by this authorYAIR MANOR
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
Search for more papers by this authorFARZAN NADIM
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
Search for more papers by this authorMARLENE BARTOS
Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, Philadelphia, Pennsylvania 19104, USA
Search for more papers by this authorMICHAEL P. NUSBAUM
Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, Philadelphia, Pennsylvania 19104, USA
Search for more papers by this authorEVE MARDER
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
E-mail: [email protected]
Search for more papers by this authorYAIR MANOR
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
Search for more papers by this authorFARZAN NADIM
Volen Center and Biology Department, Brandeis University, MS 013, 415 South Street, Waltham, Massachusetts 02254, USA
Search for more papers by this authorMARLENE BARTOS
Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, Philadelphia, Pennsylvania 19104, USA
Search for more papers by this authorMICHAEL P. NUSBAUM
Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, Philadelphia, Pennsylvania 19104, USA
Search for more papers by this authorThis research was supported by NIH grants NS17813, MH46742, NS29436 and the Sloan Center for Theoretical Neurobiology at Brandeis University.
Abstract
Abstract: The stomatogastic nervous system of the crab, Cancer borealis, produces a slow gastric mill rhythm and a fast pyloric rhythm. When the gastric mill rhythm is not active, stimulation of the modulatory commissural ganglion neuron 1 (MCN1) activates a gastric mill rhythm in which the lateral gastric (LG) neuron fires in antiphase with interneuron 1 (Int1). We present theoretical and experimental data that indicate that the period of the MCN1 activated gastric mill rhythm depends on the strength and time course of the MCN1 evoked slow excitatory synaptic potential (EPSP) in the LG neuron, and on the strength of inhibition of Int 1 by the pacemaker of the pyloric network. This work demonstrates a new mechansim by which a slow network oscillator can be controlled by a much faster oscillatory neuron or network and suggests that modulation of the slow oscillator can occur by direct actions on the neurons and synapses of the slow oscillator, or indirectly by actions on the fast oscillator and its synaptic connection with the slow oscillator.
REFERENCES
- 1 Harris-Warrick, R. M., E. Marder, A. I. Selverston & M. Moulins, Eds. 1992. Dynamic Biological Networks. The Stomatogastric Nervous System. MIT Press. Cambridge, MA.
- 2 Marder, E. & R. L. Calabrese. 1996. Principles of rhythmic motor pattern generation. Physiol. Rev. 76: 687–717.
- 3 Nusbaum, M. P., J. M. Weimann, J. Golowasch & E. Marder. 1992. Presynaptic control of modulatory fibers by their neural network targets. J. Neurosci. 12: 2706–2714.
- 4 Coleman, M. J. & M. P. Nusbaum. 1994. Functional consequences of compartmentalization of synaptic input. J. Neurosci. 14: 6544–6552.
- 5 Coleman, M. J., P. Meyrand & M. P. Nusbaum. 1995. A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature 378: 502–505.
- 6 Nadim, F., Y. Manor, M. P. Nusbaum & E. Marder. 1998. Frequency regulation of a slow rhythm by a fast periodic input. J. Neurosci. 18: 5053–5067.
- 7 Hodgkin, A. L. & A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.
- 8 Johnson, B. R. & R. M. Harris-Warrick. 1990. Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J. Neurosci. 10: 2066–2076.
- 9 Johnson, B. R., J. H. Peck & R. M. Harris-Warrick. 1991. Temperature sensitivity of graded synaptic transmission in the lobster stomatogastric ganglion. J. Exp. Biol. 156: 267–285.
- 10 Graubard, K. 1978. Synaptic transmission without action potentials: Input-output properties of a non-spiking presynaptic neuron. J. Neurophysiol. 41: 1014–1025.
- 11 Graubard, K., J. A. Raper & D. K. Hartline. 1980. Graded synaptic transmission between spiking neurons. Proc. Natl. Acad. Sci. USA 77: 3733–3735.
- 12 Graubard, K., J. A. Raper & D. K. Hartline. 1983. Graded synaptic transmission between identified spiking neurons. J. Neurophysiol. 50: 508–521.
- 13 Sharp, A. A., M. B. O'Neil, L. F. Abbott & E. Marder. 1993. Dynamic clamp: Computer-generated conductances in real neurons. J. Neurophysiol. 69: 992–995.
- 14 Sharp, A. A., M. B. O'Neil, L. F. Abbott & E. Marder. 1993. The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16: 389–394.
- 15 Blitz, D. M., A. E. Christie, E. Marder & M. P. Nusbaum. 1995. Distribution and effects of tachykinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J. Comp. Neurol. 354: 282–294.
- 16 Beltz, B., J. S. Eisen, R. Flamm, R. M. Harris-Warrick, S. Hooper & E. Marder. 1984. Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J. Exp. Biol. 109: 35–54.
- 17 Harris-Warrick, R. M., L. M. Coniglio, N. Barazangi, J. Guckenheimer & S. Gueron. 1995. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15: 342–358.
- 18 Harris-Warrick, R. M., L. M. Coniglio, R. M. Levini, S. Gueron & J. Guckenheimer. 1995. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74: 1404–1420.
- 19 Marder, E., S. L. Hooper & K. K. Siwicki. 1986. Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J. Comp. Neurol. 243: 454–467.
- 20 Hooper, S. L. & E. Marder. 1987. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7: 2097–2112.
- 21 Nusbaum, M. P. & E. Marder. 1988. A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J. Exp. Biol. 135: 165–181.
- 22 Weimann, J. M., E. Marder, B. Evans & R. L. Calabrese. 1993. The effects of SDRNFLRFamide and TNRNFLRFamide on the motor patterns of the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 181: 1–26.
- 23 Marder, E. & J. M. Weimann. 1992. Modulatory control of multiple task processing in the stomatogastric nervous system. in Neurobiology of Motor Progamme Selection. J. Kien, C. McCrohan & B. Winlow, Eds.: 3-19. Pergamon Press. New York.
- 24 Weimann, J. M., P. Skiebe, H.-G. Heinzel, C. Soto, N. Kopell, J. C. Jorge-Rivera & E. Marder. 1997. Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide. J. Neurosci. 17: 1748–1760.
- 25 Nusbaum, M. P. & E. Marder. 1989. A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J. Neurosci. 9: 1591–1599.
- 26 Nusbaum, M. P. & E. Marder. 1989. A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9: 1600–1607.
- 27 Dando, M. R. & A. I. Selverston. 1972. Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. J. Comp. Physiol. 78: 138–175.
- 28 Sigvardt, K. A. & B. Mulloney. 1982. Sensory alteration of motor patterns in the stomatogastric nervous system of the spiny lobster Panulirus interruptus. J. Exp. Biol. 97: 137–152.
- 29 Sigvardt, K. A. & B. Mulloney. 1982. Properties of synapses made by IVN command-interneurones in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. J. Exp. Biol. 97: 153–168.
- 30 Nagy, F. & P. S. Dickinson. 1983. Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J. Exp. Biol. 105: 33–58.
- 31 Nagy, F., P. Cardi & I. Cournil. 1994. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. I. Pyloric-related neurons in the commissural ganglia. J. Neurophysiol. 71: 2477–2489.
- 32 Dickinson, P. S., F. Nagy & M. Moulins. 1988. Control of central pattern generators by an identified neurone in crustacea: Activation of the gastric mill motor pattern by a neurone known to modulate the pyloric network. J. Exp. Biol. 136: 53–87.
- 33 Dickinson, P. S. & F. Nagy. 1983. Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones. J. Exp. Biol. 105: 59–82.
- 34 Meyrand, P., J. Simmers & M. Moulins. 1991. Construction of a pattern-generating circuit with neurons of different networks. Nature 351: 60–63.
- 35 Meyrand, P., J. Simmers & M. Moulins. 1994. Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J. Neurosci. 14: 630–644.
- 36 Bartos, M. & M. P. Nusbaum. 1997. Intercircuit control of motor pattern modulation by presynaptic inhibition. J. Neurosci. 17: 2247–2256.
- 37 Harris-Warrick, R. M. & R. E. Flamm. 1987. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7: 2113–2128.
- 38 Flamm, R. E. & R. M. Harris-Warrick. 1986. Aminergic modulation in the stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J. Neurophysiol. 55: 866–881.
- 39 Marder, E. & J. S. Eisen. 1984. Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters. J. Neurophysiol. 51: 1362–1374.
- 40 Johnson, B. R., J. H. Peck & R. M. Harris-Warrick. 1995. Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J. Neurophysiol. 174: 437–452.
- 41 Marder, E., J. C. Jorge-Rivera, V. Kilman & J. M. Weimann. 1997. Peptidergic modulation of synaptic transmission in a rhythmic motor system. In The Synapse: In Development, Health, and Disease, Vol. 2. B. W. Festoff, D. Hantaï & B. A. Citron, Eds.: 213-233. JAI Press Inc. Greenwich, CT.