Molecular Diversity of K+ Channels
Corresponding Author
WILLIAM A. COETZEE
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Corresponding authors: William A. Coetzee, D.Sc., Pediatric Cardiology, TH517, New York University School of Medicine, 550 First Avenue, New York, New York 10016. Phone: 212–263–8518; fax: 212–263–1393; e-mail: [email protected] and Bernardo Rudy, Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, New York 10016. Phone: 212–263–0431; fax: 212–689–9060; e-mail; [email protected]Search for more papers by this authorYIMY AMARILLO
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorJOANNA CHIU
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorALAN CHOW
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorDAVID LAU
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorTOM McCORMACK
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorHERMAN MORENA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorMARCELA S. NADAL
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorANDER OZAITA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorDAVID POUNTNEY
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorMICHAEL SAGANICH
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorELEAZAR VEGA-SAENZ DE MIERA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorBERNARDO RUDY
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Department Biochemistry, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorCorresponding Author
WILLIAM A. COETZEE
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Corresponding authors: William A. Coetzee, D.Sc., Pediatric Cardiology, TH517, New York University School of Medicine, 550 First Avenue, New York, New York 10016. Phone: 212–263–8518; fax: 212–263–1393; e-mail: [email protected] and Bernardo Rudy, Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, New York 10016. Phone: 212–263–0431; fax: 212–689–9060; e-mail; [email protected]Search for more papers by this authorYIMY AMARILLO
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorJOANNA CHIU
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorALAN CHOW
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorDAVID LAU
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorTOM McCORMACK
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorHERMAN MORENA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorMARCELA S. NADAL
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorANDER OZAITA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorDAVID POUNTNEY
Department Pediatric Cardiology New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorMICHAEL SAGANICH
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorELEAZAR VEGA-SAENZ DE MIERA
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorBERNARDO RUDY
Department of Physiology and Neuroscience New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Department Biochemistry, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
Search for more papers by this authorAbstract
ABSTRACT: K+ channel principal subunits are by far the largest and most diverse of the ion channels. This diversity originates partly from the large number of genes coding for K+ channel principal subunits, but also from other processes such as alternative splicing, generating multiple mRNA transcripts from a single gene, heteromeric assembly of different principal subunits, as well as possible RNA editing and posttranslational modifications. In this chapter, we attempt to give an overview (mostly in tabular format) of the different genes coding for K+ channel principal and accessory subunits and their genealogical relationships. We discuss the possible correlation of different principal subunits with native K+ channels, the biophysical and pharmacological properties of channels formed when principal subunits are expressed in heterologous expression systems, and their patterns of tissue expression. In addition, we devote a section to describing how diversity of K+ channels can be conferred by heteromultimer formation, accessory subunits, alternative splicing, RNA editing and posttranslational modifications. We trust that this collection of facts will be of use to those attempting to compare the properties of new subunits to the properties of others already known or to those interested in a comparison between native channels and cloned candidates.
REFERENCES
- 1
Papazian, D.M., T.L. Schwarz, B.L. Tempel, Y.N. Jan & L.Y. Jan.
1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila.
Science
237: 749–753.
- 2
Tempel, B.L., D.M. Papazian, T.L. Schwarz, Y.N. Jan & L.Y. Jan.
1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila.
Science
237: 770–775.
- 3
Kamb, A., L.E. Iverson & M.A. Tanouye.
1987. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel.
Cell
50: 405–413.
- 4
Stuhmer, W., M. Stocker, B. Sakmann, P. Seeburg, A. Baumann, A. Grupe & O. Pongs.
1988. Potassium channels expressed from rat brain cDNA have delayed rectifier properties.
FEBS Lett.
242: 199–206.
- 5
Takumi, T., H. Ohkubo & S. Nakanishi.
1988. Cloning of a membrane protein that induces a slow voltage-gated potassium current.
Science
242: 1042–1045.
- 6
Jan, L.Y., & Y.N. Jan.
1997. Voltage-gated and inwardly rectifying potassium channels.
J. Physiol. (Lond.)
505: 267–282.
- 7
Aguilar-Bryan, L., J.P. Clement, G. Gonzalez, K. Kunjilwar, A. Babenko & J. Bryan.
1998. Toward understanding the assembly and structure of KATP channels.
Physiol. Rev.
78: 227–245.
- 8
Isomoto, S., Kondo, C. & Kurachi, Y.
1997. Inwardly rectifying potassium channels: Their molecular heterogeneity and function.
Jpn. J. Physiol.
47: 11–39.
- 9
Nichols, C.G., & A.N. Lopatin.
1997. Inward rectifier potassium channels.
Ann. Rev. Physiol.
59: 171–191.
- 10
Barry, D.M., & J.M. Nerbonne.
1996. Myocardial potassium channels: Electrophysiological and molecular diversity.
Ann. Rev. Physiol.
58: 363–394.
- 11
Quayle, J.M., M.T. Nelson & N.B. Standen.
1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle.
Physiol. Rev.
77: 1165–1232.
- 12
Goldstein, S.A.N., K.W. Wang, N. Ilan & M.H. Pausch.
1998. Sequence and function of the two P domain potassium channels: Implication of an emerging superfamily.
J. Mol. Med.
76: 13–20.
- 13
Vega-Saenz De Miera, E., M. Weiser, C. Kentros, D. Lau, H. Moreno, P. Serodio & B. Rudy. 1994. Shaw-related K+ channels in mammals. In Handbook of Membrane Channels. 41-78. Academic Press. New York.
- 14
Lhemann-Horn, F., & R. Rudel.
1996. Molecular pathophysiology of voltage-gated ion channels.
Rev. Physiol. Biochem. Pharmacol.
128: 195–268.
- 15
Dolly, J.O., & D.N. Parcej.
1996. Molecular properties of voltage-gated K+ channels.
J. Bioenerg. Biomembr.
28: 231–253.
- 16
Chandy, K.G. & G.A. Gutman. 1995. Voltage-gated potassium channel genes. In Handbook of Receptors and Channels: Ligand and Voltage-Gated Ion Channels. ed. R.A. North, Ed.: 1-71. CRC Press. Boca Raton, FL.
- 17
Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait & R. Mackinnon.
1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity.
Science
280: 69–77.
- 18
Catterall, W.A.
1993. Structure and modulation of Na+ and Ca2+ channels.
Ann. N.Y. Acad. Sci.
707: 1–19.
- 19
Mackinnon, R.
1991. Determination of the subunit stoichiometry of a voltage- activated potassium channel.
Nature
350: 232–235.
- 20
Mackinnon, R., R.W. Aldrich & A.W. Lee.
1993. Functional stoichiometry of Shaker potassium channel inactivation.
Science
262: 757–759.
- 21
Rudy, B.
1988. Diversity and ubiquity of K channels.
Neuroscience
25: 729–749.
- 22
Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Inc. Sunderland, MA.
- 23
Ho, K., C.G. Nichols, W.J. Lederer, J. Lytton, P.M. Vassilve, M.V. Kanazirska & S.C. Hebert.
1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel.
Nature
362: 31–38.
- 24
Kubo, Y., T.J. Baldwin, Y.N. Jan & L.Y. JAN.
1993. Primary structure and functional expression of a mouse inward rectifier potassium channel.
Nature
362: 127–133.
- 25
Dascal, N., W. Schreibmayer, N.F. LIM et al.
1993. Atrial G protein-activated K+ channel: Expression cloning and molecular properties.
Proc. Natl. Acad. Sci. USA.
90: 10235–10239.
- 26
Lesage, F., E. Guillemare, M. Fink, F. Duprat, M. Lazdunski, G. Romey & J. Bahhanin.
1996. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure.
EMBO J.
15: 1004–1011.
- 27
Lesage, F., R. Reyes, M. Fink, F. Duprat, E. Guillemare & M. Lazdunski.
1996. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge.
EMBO J.
15: 6400–6407.
- 28
Fink, M., F. Lesage, F. Duprat, C. Heurteaux, R. Reyes, M. Fosset & M. Lazdunski.
1998. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids.
Embo J.
17: 3297–3308.
- 29
Taglialatela, M., M.S. Champagne, J.A. Drewe & A.M. Brown.
1994. Comparison of H5, S6, and H5-S6 exchanges on pore properties of voltage-dependent K+ channels.
J. Biol. Chem.
269: 13867–13873.
- 30
Heginbotham, L., Z. Lu, T. Abramson & R. Mackinnon.
1994. Mutations in the K+ channel signature sequence.
Biophys. J.
66: 1061–1067.
- 31
Bailie, T.L. & C. Elkan 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. AAAI Press. Menlo Park, CA.
- 32
Chandy, K.G.
1991. Simplified gene nomenclature.
Nature
352: 26.
- 33
Doupnik, C.A., N. Davidson & H.A. Lester.
1995. The inward rectifier potassium channel family.
Curr. Opin. Neurobiol.
5: 268–277.
- 34
Bond, C.T., M. Pessia, X.M. Xia, A. Lagrutta, M.P. Kavanaugh & J.P. Adelman.
1994. Cloning and expression of a family of inward rectifier potassium channels.
Recept. Channels
2: 183–191.
- 35
Shuck, M.E., T.M. Piser, J.H. Bock, J.L. Slightom, K.S. Lee & M.J. Bienkowski.
1997. Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3).
J. Biol. Chem.
272: 586–593.
- 36
Gosset, P., G.A. Ghezala, B. Kron, M.L. Yaspo, A. Poutska, H. Lehrach, P.M. Sinet & N. CRéau.
1997. A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1).
Genomics
44: 237–241.
- 37
Shuck, M.E., T.M. Piser, J.H. Bock, J.L. Slightom, K.S. Lee & M.J. Bienkowski.
1997. Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3).
J. Biol. Chem.
272: 586–593.
- 38
Krapivinsky, G., I. Medina, L. Eng L. Krapivinsky, Y.H. Yang & D.E. Clapham.
1998. A novel inward rectifier K+ channel with unique pore properties.
Neuron
20: 995–1005.
- 39
Hedin, K.E., N.F. Lim & D.E. Clapham.
1996. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes.
Neuron
16: 423–429.
- 40
Christie, M.J., R.A. North, P.B. Osborne, J. Douglass & J. Adelman.
1990. Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits.
Neuron
4: 405–411.
- 41
Isacoff, E.Y., Y.N. Jan & L.Y. Jan.
1990. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes.
Nature
345: 530–534.
- 42
McCormack, K., J.W. Lin, L.E. Iverson & B. Rudy.
1990. Shaker K+ channel subunits from heteromultimeric channels with novel functional properties.
Biochem. Biophys. Res. Commun.
171: 1361–1371.
- 43
Ruppersberg, J.P., K.H. Schroter, B. Sakmann, M. Stocker, S. Sewing & O. Pongs.
1990. Heteromultimeric channels formed by rat brain potassium-channel proteins.
Nature
345: 535–537.
- 44
Weiser, M., E. Vega-Saenz De Miera, C. Kentros, H. Moreno, L. Franzen, D. Hillman, H. Baker & B. Rudy.
1994. Differential expression of Shaw-related K+ channels in the rat central nervous system.
J. Neurosci.
14: 949–972.
- 45
Roeper, J., S. Sewing, Y. Zhang, T. Sommer, S.G. Wanner & O. Pongs.
1998. NIP domain prevents N-type inactivation in voltage-gated potassium channels.
Nature
391: 390–393.
- 46
Li, M., Y.N. Jan & L.Y. Jan.
1992. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel.
Science
257: 1225–1230.
- 47
Shen, N.V., & P.J. Pfaffinger.
1995. Molecular recognition and assembly sequences involved in the subfamily-specific assembly of voltage-gated K+ channel subunit proteins.
Neuron
14: 625–633.
- 48
Yu, W., J. Xu & M. Li.
1996. NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of shaker-like potassium channels.
Neuron
16: 441–453.
- 49
Sewing, S., J. Roeper & O. Pongs.
1996. Kv β1 subunit binding specific for shaker-related potassium channel β subunits.
Neuron
16: 455–463.
- 50
Sheng, M., Y.J. Liao, Y.N. Jan & L.Y. Jan.
1993. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo.
Nature
365: 72–75.
- 51
Wang, H., D.D. Kunkel, T.M. Martin, P.A. Schwartzkroin & B.L. Tempel.
1993. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons.
Nature
365: 75–79.
- 52
Chow, A., C. Farb, A. Erisir & B. Rudy. 1998. K+ channel expression distinguishes between two subpopulations of parvalbumin-containing cortical interneurons. Submitted for publication.
- 53
Hernandez-Pineda, R., A. Chow, Y. Amarillo, H. Moreno, M. Saganich & B. Rudy. 1999. Kv3.1-Kv3.2 heteromultimeric channels underlie a high voltage-activating component of the delayed rectifier K+ current in projecting neurons from the Globus Pallidus. J. Neurophysiol. In press.
- 54
Mi, H., T.J. Deerinck, M.H. Ellisman & T.L. Schwarz.
1995. Differential distribution of closely related potassium channels in rat Schwann cells.
J. Neurosci.
15: 3761–3774.
- 55
Kramer, J.W., M.A. Post, A.M. Brown & G.E. Kirsch.
1998. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 alpha-subunits.
Am. J. Physiol.
274: C1501–C1510.
- 56
Salinas, M., F. Duprat, C. Heurteaux, J.P. Hugnot & M. Lazdunski.
1997. New modulatory alpha subunits for mammalian Shab K+ channels.
J. Biol. Chem.
272: 24371–24379.
- 57
Patel, A.J., M. Lazdunski & E. Honoré
1997. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes.
EMBO J.
16: 6615–6625.
- 58
Yang, W.P., P.C. Levesque, W.A. Little, M.L. Conder, P. Ramakrishnan, M.G. Neubauer & M.A. Blanar.
1998. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy.
J. Biol. Chem.
273: 19419–19423.
- 59
Shi, W., H.S. Wang, Z. Pan, R.S. Wymore, I.S. Cohen, D. McKinnon & J.E. Dixon.
1998. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia.
J. Physiol. (Lond.)
511: 675–682.
- 60
London, B., M.C. Trudeau, K.P. Newton, A.K. Beyer, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, C.A. Satler & G.A. Robertson.
1997. Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current.
Circ. Res.
81: 870–878.
- 61
Chen, M.L., T. Hoshi & C.F. Wu.
1996. Heteromultimeric interactions among K+ channel subunits from Shaker and eag families in Xenopus oocytes.
Neuron
17: 535–542.
- 62
Liao, Y.J., Y.N. Jan L.Y. Jan.
1996. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain.
J. Neurosci.
16: 7137–7150.
- 63
Fink, M., F. Duparat C. Heurteaux, F. Lesage, G. Romey, J. Barhanin & M. Lazdunski.
1996. Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ channel proteins via their N-terminal end.
FEBS Lett.
378: 64–68.
- 64
Tinder, A., Y.N. Jan & L.Y. Jan.
1996. Regions responsible for the assembly of inwardly retifying potassium channels.
Cell
87: 857–868.
- 65
Nakamura, T.Y., M. Artman, B. Rudy & W.A. Coetzee.
1998. Inihibition of rat ventricular IK1 with antisense oligonucleotides targeted to Kir2.1 mRNA.
Am. J. Physiol.
274: H892–H900.
- 66
Fink, M., F. Duprat, C. Heurteaux, F. Lesage, G. Romey, J. Barhanin & M. Lazdunski.
1996. Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ Channel proteins via their N-terminal end.
FEBS Lett.
378: 64–68.
- 67
Pessia, M., S.J. Tucker, K. Lee, C.T. Bond & J.P. Adelman.
1996. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels.
EMBO J.
15: 2980–2987.
- 68
Adelman, J.P., K.Z. Shen, M.P. Kavanaugh, R.A. Warren, Y.N. Wu, A. Lagrutta, C.T. Bond & R.A. North.
1992. Calcium-activated potassium channels expressed from cloned complementary DNAs.
Neuron
9: 209–216.
- 69
Tseng-Crank, J., C.D. Foster, J.D. Krause, R. Mertz, N. Godinot, T.J. Dichiara & P.H. Reinhart.
1994. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain.
Neuron
13: 1315–1330.
- 70
Xie, J., & D.P. McCobb.
1998. Control of alternative splicing of potassium channels by stress hormones.
Science
280: 443–446.
- 71
Butler, A., S. Tsunoda, D.P. McCobb, A. Wei & L. Salkoff.
1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels.
Science
261: 221–224.
- 72
Navaratnam, D.S., T.J. Bell, T.D. Tu, E.L. Cohen & J.C. Oberholtzer.
1997. Differential distribution of Ca2+-activated K+channel splice variants among hair cells along the tonotopic axis of the chick cochlea.
Neuron
19: 1077–1085.
- 73
Rosenblatt, K.P., Z.P. Sun, S. Heller & A.J. Hudspeth.
1997. Distribution of Ca2+-activated K+channel isoforms along the tonotopic gradient of the chicken's cochlea.
Neuron
19: 1061–1075.
- 74
Kohler, M., B. Hirschberg, C.T. Bond, J.M. Kinzie, N.V. Marrion, J. Maylie & J.P. Adelman.
1996. Small-conductance, calcium-activated potassium channels from mammalian brain.
Science
273: 1709–1714.
- 75
Rehm, H., & M. Lazdunski.
1988. Purification and subunit structure of a putative K+ channel protein identified by its binding properties to dendrotoxin I.
Proc. Natl. Acad. Sci. USA
85: 4919–4923.
- 76
Scott, V.E.S., J. Rettig D.N. Parcej, J.N. Keen, J.B.C. Findlay, O. Pongs & J.O. Dolly.
1994. Primary structure of a beta subunit of alpha-dendrotoxin-sensitive K+ channels from bovine brain.
Proc. Natl. Acad. Sci. USA
91: 1637–1641.
- 77
McCormack, T., & K. McCormack.
1994. Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily [letter].
Cell
79: 1133–1135.
- 78
Rettig, J., S.H. Heinemann, F. Wunder, C. Lorra, R. Wittka, O. Dolly & O. Pongs.
1994. Inactivation properties of voltage gated K+ channels altered by the presence of - subunit.
Nature
369: 289–294.
- 79
McCormack, K., T. McCormack, M. Tanouye, B. Rudy & W. STüher.
1995. Alternative splicing of the human Shaker K+ channel β1 gene and functional expression of the β1 gene product.
FEBS Lett.
370: 32–36.
- 80
Heinemann, S.H., J. Rettig, F. Wunder & O. Pongs.
1995. Molecular and functional characterization of a rat brain Kv beta 3 potassium channel subunit.
FEBS Lett.
377: 383–389.
- 81
Wang, Z., J. Kiehn, Q. Yang, A.M. Brown & B.A. Wible.
1996. Comparison of binding and block produced by alternatively spliced Kvbeta1 subunits.
J. Biol. Chem.
271: 28311–28317.
- 82
England, S.K., V.N. Uubele, J. Kodali, P.B. Bennett & M.M. Tamkun.
1995. A novel K+ channel β-subunit (hKβ1.3) is produced via alternative mRNA splicings.
J. Biol. Chem.
270: 28531–28534.
- 83
Shi, G.Y., K. Nakahira, S. Hammond, K.J. Rhodes, L.E. Schechter & J.S. Trimmer
1996. β Subunits promote K+ channel surface expression through effects early in biosynthesis.
Neuron
16: 843–852.
- 84
Nagaya, N., & D.M. Papazian.
1997. Potassium channel α and β subunits assemble in the endoplasmic reticulum.
J. Biol. Chem.
272: 3022–3027.
- 85
Wible, B.A., Q. Yang, Y.A. Kuryshev, E.A. Accili & A.M. Brown.
1998. Cloning and expression of a novel K+ channel regulatory protein, KChAP.
J. Biol. Chem.
273: 11745–11751.
- 86
Fink, M., F. Duprat, F. Lesage, C. Heurteaux, G. Romey, J. Barhanin & M. Lazdunski.
1996. A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression.
J. Biol. Chem.
271: 26341–26348.
- 87
Rhodes, K.J., B.W. Strassle, M.M. Monaghan, Z. Bekele-Arcuri, M.F. Matos & J.S. Trimmer.
1997. Association and colocalization of the Kvβ1 and Kvβ2 β units with Kv1 α-subunits in mammalian brain K+ channel complexes.
J. Neurosci.
17: 8246–8258.
- 88
Wilson, G.F., Z. Wang, S.W. Chouinard, L.C. Griffith & B. Ganetzky.
1998. Interaction of the K channel beta subunit, Hyperkinetic, with eag family members.
J. Biol. Chem.
273: 6389–6394.
- 89
Hoshi, N., H. Takahashi, M. Shahidullah, S. Yokoyama & H. Higashida.
1998. KCR1, a membrane protein that facilitates functional expression of non-inactivating K+ currents associates with rat EAG voltage-dependent K+ channels [In Process Citation].
J. Biol. Chem.
273: 23080–23085.
- 90
Folander, K., J.S. Smith, J. Antanavage, C. Bennett, R.B. Stein & R. Swanson.
1990. Cloning and expression of the delayed-rectifier Isk channel from neonatal rat heart and diethylstilbestrol-rrimed rat uterus.
Proc. Natl. Acad. Sci. USA
87: 2975–2979.
- 91
Sakagami, M., K. Fukazawa, T. Matsunaga, H. Fujita, N. Mori, T. Takumi, H. Ohkubo & S. Nakanishi.
1991. Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation.
Hear. Res.
56: 168–172.
- 92
Freeman, L.C., & R.S. Kass.
1993. Expression of a minimal K+ channel protein in mammalian cells and immunolocalization in guinea pig heart.
Circ. Res.
73: 968–973.
- 93
Varnum, M.D., A.E. Busch, C.T. Bond, J. Maylie & J.P. Adelman.
1993. The min K channel underlies the cardiac potassium current IKs and mediates species-specific responses to protein kinase C.
Proc. Natl. Acad. Sci. USA
90: 11528–11532.
- 94
Barhanin, J., F. Lesage, E. Guillemare, M. Fink, M. Lazdunski & G. Romey.
1996. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current.
Nature
384: 78–80.
- 95
Sanguinetti, M.C., M.E. Curran, A. Zou, J. Shen, P.S. Spector, D.L. Atkinson & M.T. Keating.
1996. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel.
Nature
384: 80–83.
- 96
Salata, J.J., N.K. Jurkiewicz, J. Wang, B.E. Evans, H.T. Orme & M.C. Sanguinetti.
1998. A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents.
Mol. Pharmacol.
54: 220–230.
- 97
McDonald, T.V., Z.H. Yu, Z. Ming, E. Palma, M.B. Meyers, K.W. Wang, S.A.N. Goldstein & G.I. Fishman.
1997. A minK-HERG complex regulates the cardiac potassium current IKr.
Nature
388: 289–292.
- 98
Sanguinetti, M.C., & N.K. Jurkiewicz.
1990. Two components of cardiac delayed rectifier K+ current: Differential sensitivity to block by class III antiarrhythmic agents.
J. Gen. Physiol.
96: 194–214.
- 99
Sanguinetti, M.C., & N.K. Jurkiewicz.
1991. Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells.
Am. J. Physiol.
260: H393–399.
- 100
Busch, A.E., M.P. Kavanaugh, M.D. Varnum, J.P. Adelman & R.A. North.
1992. Regulation by second messengers of the slowly activating, voltage-dependent potassium current expressed in Xenopus oocytes.
J. Physiol.
450: 491–502.
- 101
Blumenthal, E.M., & L.K. Kaczmarek.
1994. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes.
J. Neurosci.
14: 3097–3105.
- 102
Tai, K.K., & S.A.N. Goldstein.
1998. The conduction pore of a cardiac potassium channel.
Nature
391: 605–608.
- 103
Knaus, H.G., K. Folander, M. Garcia-Calvo, M.L. Garcia, G.J. Kaczorowski, M. Smith & R. Swanson.
1994. Primary sequence and immunological characterization of beta-subunit of high conductance Ca (2+)-activated K+ channel from smooth muscle.
J. Biol. Chem.
269: 17274–17278.
- 104
Hanner, M., R. Vianna-Jorge, A. Kamassah, W.A. Schmalhofer, H.G. Knaus, G.J. Kaczorowski & M.L. Garcia.
1998. The beta subunit of the high conductance calcium-activated potassium channel.
Identification of residues involved in charybdotoxin binding. J. Biol. Chem.
273: 16289–16296.
- 105
Schopperle, W.M., M.H. Holmqvist, Y. Zhou, J. Wang, Z. Wang, L.C. Griffith, I. Keselman, F. Kusinitz, D. Dagan & I.B. Levitan.
1998. lob, a novel protein that interacts with the slowpoke calcium-dependent potassium channel.
Neuron
20: 565–573.
- 106
Tucker S.J., F.M. Gribble, C. Zhao, S. Trapp & F.M. Ashcroft.
1997. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor.
Nature
387: 179–183.
- 107
John, S.A., J.R. Monck, J.N. Weiss & B. Ribalet.
1998. The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells.
J. Physiol. (Lond.)
510: 333–346.
- 108
Shyng, S., & C.G. NICHOLS.
1997. Octameric stoichiometry of the KATP channel complex.
J. Gen. Physiol.
110: 655–664.
- 109
Babenko, A.P., L. Aguilar-Bryan & J. Bryan.
1998. A view of sur/KIR6.X, KATP channels.
Ann. Rev. Physiol.
60: 667–687.
- 110
Seeburg, P.H., M. Higuichi & R. Sprengel.
1998. RNA editing of brain glutamate receptor channels: Mechanism and physiology.
Brain Res. Brain Res. Rev.
26: 217–229.
- 111
Maas, S., T. Melcher & P.H. Seeburg.
1997. Mammalian RNA-dependent deaminases and edited mRNAs.
Curr. Opin. Cell Biol.
9: 343–349.
- 112
Patton, D.E., T. Silva & F. Bezanilla.
1997. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties.
Neuron
19: 711–722.
- 113
Jonas, E.A., & L.K. Kaczmarek.
1996. Regulation of potassium channels by protein kinases.
Curr. Opin. Neurobiol.
6: 318–323.
- 114
Levitan, I.B.
1994. Modulation of ion channels by protein phosphorylation and dephosphorylation.
Ann. Rev. Physiol.
56: 193–212.
- 115
Kaczmereck, K.L. & I.B. Levitan. 1987. Neuromodulation: The Biochemical Control of Neuronal Excitability. Oxford University Press. Oxford.
- 116
Covarrubias, M., A. Wei, L. Salkoff & T.B. Vyas.
1994. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate.
Neuron
13: 1403–1412.
- 117
Beck, E.J., R.G. Sorensen, S.J. Slater & M. Covarrubias.
1998. Interactions between multiple phosphorylation sites in the inactivation particle of a K+ channel.
Insights into the molecular mechanism of protein kinase C action. J. Gen. Physiol.
112: 71–84.
- 118
Roeper, J., C. Lorra & O. Pongs.
1997. Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase.
J. Neurosci.
17: 3379–3391.
- 119
Cohen, N.A., J.E. Brenman, S.H. Snyder & D.S. Bredt.
1996. Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation.
Neuron
17: 759–767.
- 120
Cohen, N.A., Q. Sha E.N. Makhina, A.N. Lopatin, M.E. Linder, S.H. Snyder & C.G. Nichols.
1996. Inhibition of an inward rectifier potassium channel (Kim2.3) by G-protein βγ subunits.
J. Biol. Chem.
271: 32301–32305.
- 121
Storm, J.F.
1988. Temporal integration by a slowly inactivating K+ current in hippocampal neurons.
Nature
336: 379–381.
- 122
Wu, R.L., & M.E. Barish.
1992. Two pharmacologically and kinetically distinct transient potassium currents in cultured embryonic mouse hippocampal neurons.
J. Neurosci.
12: 2235–2246.
- 123
Sheng, M., M.L. Tsaur, Y.N. Jan & L.Y. JAN.
1992. Subcellular segregation of two A-type K+ channel proteins in rat central neurons.
Neuron
9: 271–284.
- 124
Debanne, D., N.C., Guerineau, B.H. Gahwiler & S.M. Thompson.
1997. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus.
Nature
389: 286–289.
- 125
Feng, J.L., B. Wible, G.R. LI, Z.G. Wang & S. Nattel.
1997. Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes.
Circ. Res.
80: 572–579.
- 126
Patel, A.J., M. Lazdunski & E. Honore.
1997. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes.
EMBO J.
16: 6615–6625.
- 127
Fiset, C., R.B. Clark, Y. Shimoni & W. Giles.
1997. Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle.
J. Physiol. (Lond.)
500: 51–63.
- 128
Nakamura, T.Y., W.A. Coetzee, E. Vega-Saenz De Miera, M. Artman & B. RUDY.
1997. Modulation of Kv4 channels, key components of rat ventricular transient outward K+ current by PKC.
Am. J. Physiol.
273: H1775–H1786.
- 129
Marrion, N.V.
1997. Does r-EAG contribute to the M-current?.
Trends Neurosci.
20: 243–244.
- 130
Mathie, A., & C.S. Watkins.
1997. Is EAG the answer to the M-current?.
Trends Neurosci.
20: 14.
- 131
Feng, J.L., B. Wible, G.R. LI, Z. Wang & S. Nattel.
1996. Antisense oligonucleotides directed against Kv1.5 mRNA specifically inhibit the ultrarapid delayed rectifier in cultured adult human atrial myocytes.
Circulation
94: I–528.(Abstr.).
- 132
Garcia-Calvo, M., H.G. Knaus, O.B. McManus, K.M. Giangiacomo, G.J. Kaczorowski & M.L. Garcia.
1994. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle.
J. Biol. Chem.
269: 676–682.
- 133
Knaus, H.G., A. Eberhart, R.O. Koch, P. Munujos, W.A. Schmalhofer, J.W. Warmke, G.J. Kaczorowski & M.L. Garcia.
1995. Characterization of tissue-expressed alpha subunits of the high conductance Ca2+-activated K+ channel.
J. Biol. Chem.
270: 22434–22439.
- 134
Ishii, T.M., C. Silvia B. Hirschberg, C.T. Bons, J.P. Adelman & J. Maylie.
1997. A human intermediate conductance calcium-activated potassium channel.
Proc. Natl. Acad. Sci. USA
94: 11651–11656.
- 135
Logsdon, N.J., J. Kang, J.A. Togo, E.P. Christian & J. Aiyar.
1997. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes.
J. Biol. Chem.
272: 32723–32726.
- 136
Joiner, W.J., L.Y. Wang, M.D. Tang & L.K. Kaczmarek.
1997. hSk4, a member of a novel subfamily of calcium-activated potassium channels.
Proc. Natl. Acad. Sci. USA
94: 11013–11018.
- 137
Corey, S.G. Krapivinsky, L. Krapivinsky & D.E. Claphan.
1998. Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh.
J. Biol. Chem.
273: 5271–5278.
- 138
Swofford, D.L. 1993. PAUP. (3.1.1). (Computer Program). Smithsonian Institution. Washington DC, Sinauer Associates. Sunderland, MA.
- 139
Gatesy, J., R. Desalle & W. Wheeler.
1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data.
Mol. Phylogenet. Evol.
2: 152–157.
- 140
Lees-Miller, J.P., C. Kondo, L. Wang & H.J. Duff.
1997. Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts.
Circ. Res.
81: 719–726.
- 141
Nakamura, M., H. Watanabe, Y. Kubo, M. Yokoyama, T. Matsumoto, H. SASAI & Y. NISHI.
1998. KQT2, a new putative potassium channel family produced by alternative splicing. Isolation, genomic structure, and alternative splicing of the putative potassium channels.
Recep. Channels
5: 255–271.
- 142
Kondo, C., S. Isomoto, S. Matsumoto, M. Yamada, Y. Horio, S. Yamashita, K. Takemura-Kameda, Y. Matsuzawa & Y. Kurachi.
1996. Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f).
FEBS Lett.
399: 122–126.
- 143
Yano, H., L.H. Philipson, J.L. Kugler, Y. Tokuyama, E.M. Davis, M.M. Le Beau, D.J. Nelson, G.I. Bell & J. Takeda.
1994. Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.
Molecular Pharmacology
45: 854–860.
- 144
Wei, J., M.E. Hodes, R. Piva, Y. Feng, Y. Wang, B. Ghetti & S.R. Dlouhy.
1998. Characterization of murine girk2 transcript isoforms: Structure and differential expression.
Genomics
51: 379–390.
[NOTE ADDED IN PROOF: After this paper was submitted, Wang et al. (1998, Science 282: 1890-1893) have presented strong evidence that KCNQ2 and KCNQ3 subunits form channels mediating the “M-current.”]