Contributions of Kv3 Channels to Neuronal Excitability
Corresponding Author
BERNARDO RUDY
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Address for correspondence: Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York 10016. e-mail: [email protected]Search for more papers by this authorALAN CHOW
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorDAVID LAU
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorYIMY AMARILLO
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorANDER OZAITA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorMICHAEL SAGANICH
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorHERMAN MORENO
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorMARCELA S. NADAL
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorRICARDO HERNANDEZ-PINEDA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
Search for more papers by this authorARTURO HERNANDEZ-CRUZ
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorALEV ERISIR
Department of Physiology, New York Medical College, Valhalla, New York, USA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorCHRISTOPHER LEONARD
Department of Physiology, New York Medical College, Valhalla, New York, USA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorELEAZAR VEGA-SAENZ DE Miera
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorCorresponding Author
BERNARDO RUDY
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Address for correspondence: Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York 10016. e-mail: [email protected]Search for more papers by this authorALAN CHOW
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorDAVID LAU
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorYIMY AMARILLO
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorANDER OZAITA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorMICHAEL SAGANICH
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorHERMAN MORENO
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorMARCELA S. NADAL
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorRICARDO HERNANDEZ-PINEDA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
Search for more papers by this authorARTURO HERNANDEZ-CRUZ
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorALEV ERISIR
Department of Physiology, New York Medical College, Valhalla, New York, USA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorCHRISTOPHER LEONARD
Department of Physiology, New York Medical College, Valhalla, New York, USA
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorELEAZAR VEGA-SAENZ DE Miera
Department of Physiology and Neuroscience, and Department of Biochemistry, New York University of Medicine, New York, New York 10016, USA
Search for more papers by this authorAbstract
ABSTRACT: Four mammalian Kv3 genes have been identified, each of which generates, by alternative splicing, multiple protein products differing in their C-terminal sequence. Products of the Kv3.1 and Kv3.2 genes express similar delayed-rectifier type currents in heterologous expression systems, while Kv3.3 and Kv3.4 proteins express A-type currents. All Kv3 currents activate relatively fast at voltages more positive than −10 mV, and deactivate very fast. The distribution of Kv3 mRNAs in the rodent CNS was studied by in situ hybridization, and the localization of Kv3.1 and Kv3.2 proteins has been studied by immunohistochemistry. Most Kv3.2 mRNAs (∼90%) are present in thalamic-relay neurons throughout the dorsal thalamus. The protein is expressed mainly in the axons and terminals of these neurons. Kv3.2 channels are thought to be important for thalamocortical signal transmission. Kv3.1 and Kv3.2 proteins are coexpressed in some neuronal populations such as in fast-spiking interneurons of the cortex and hippocampus, and neurons in the globus pallidus. Coprecipitation studies suggest that in these cells the two types of protein form heteromeric channels. Kv3 proteins appear to mediate, in native neurons, similar currents to those seen in heterologous expression systems. The activation voltage and fast deactivation rates are believed to allow these channels to help repolarize action potentials fast without affecting the threshold for action potential generation. The fast deactivating current generates a quickly recovering afterhyperpolarization, thus maximizing the rate of recovery of Na+ channel inactivation without contributing to an increase in the duration of the refractory period. These properties are believed to contribute to the ability of neurons to fire at high frequencies and to help regulate the fidelity of synaptic transmission. Experimental evidence has now become available showing that Kv3.1-Kv3.2 channels play critical roles in the generation of fast-spiking properties in cortical GABAergic interneurons.
REFERENCES
- 1 Yokoyama, S., K. Imoto, T. Kawamura, H. Higashida, N. Iwabe, T. Miyata & S. Numa. 1989. Potassium channels from NG108-15 neuroblastoma-glioma hybrid cells. Primary structure and functional expression from cDNAs. FEBS Lett. 259: 37.
- 2 McCormack, T., E.C. Vega-Saenz De Miera & B. Rudy. 1990. Molecular cloning of a member of a third class of Shaker-family K+ channel genes in mammals [published erratum appears in Proc. Natl. Acad. Sci. U.S.A. 1991 May 1: 88(9): 4060]. Proc. Natl. Acad. Sci. USA. 87: 5227.
- 3 Rudy, B., K. Sen, E. Vega-Saenz De Miera, D. Lau, T. Ried & D.C. Ward. 1991. Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21. J. Neuroscie. Res. 29: 401.
- 4 Schroter, K.H., J.P. Ruppersberg, F. Wunder, J. Rettig, M. Stocker & O. Pongs. 1991. Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. FEBS Lett. 278: 211.
- 5 Luneau, C.J., J.B. Williams, J. Marshall, E.S. Levitan, C. Oliva, J.S. Smith, J. Antanavage, K. Folander, R.B. Stein, R. Swanson, et al. 1991. Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc. Natl. Acad. Sci. U.S.A. 88: 3932.
- 6 Luneau, C., R. Wiedmann, J.S. Smith & J.B. Williams. 1991. Shaw-like rat brain potassium channel cDNAs with divergent 3′ ends. FEBS Lett. 288: 163.
- 7 Vega-Saenz De Miera, E.C., K. Sen, P. Serodio, T. McCormack & B. Rudy. 1990. Description of a new class of potassium channel genes. Soc. Neurosci. Abst. 16: 4.
- 8 Vega-Saenz De Miera, E.C., N. Chiu, K. Sen, D. Lau, J.W. Lin & B. Rudy. 1991. Toward an understanding of the molecular composition of K+ channels: Products of at least nine distinct Shaker family K+ channel genes are expressed in a single cell. Biophys. J. 59: 197a.
- 9 Vega-Saenz De Miera, E., H. Moreno, D. Fruhling, C. Kentros & B. Rudy. 1992. Cloning of ShIII (Shaw-like) cDNAs encoding a novel high-voltage-activating, TEA-sensitive, type-A K+ channel. Proc. R. Soc. Lond. B Biol. Sci. 248: 9.
- 10 Ghanshani, S., M. Pak, J.D. McPherson, M. Strong, B. Dethlefs, J.J. Wasmuth, L. Salkoff, G.A. Gutman & K.G. Chandy. 1992. Genomic organization, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3.3, and mapping of Kv3.3 and Kv3.4 to human chromosomes 19 and 1. Genomics 12: 190.
- 11 Ried, T., B. Rudy, E. Vega-Saenz De Miera, D. Lau, D.C. Ward & K. Sen. 1993. Localization of a highly conserved human potassium channel gene (NGK2-KV4; KCNC1) to chromosome 11p15. Genomics 15: 405.
- 12 Haas, M., D.C. Ward, J. Lee, A.D. Roses, V. Clarke, P, D.E., D. Lau, E. Vega-Saenz De Miera & B. Rudy. 1993. Localization of Shaw-related K+ channel genes on mouse and human chromosomes. Mamm. Genome 4: 711.
- 13 Goldman-Wohl, D.S., E. Chan, D. Baird & N. Heintz. 1994. Kv3.3b: A novel Shaw type potassium channel expressed in terminally differentiated cerebellar Purkinji cells and deep cerebellar nuclei. J. Neurosci. 14: 511.
- 14 Rudy, B., C. Kentros, M. Weiser, D. Fruhling, P. Serodio, E. Vega-Saenz De Miera, M.H. Ellisman, J.A. Pollock & H. Baker. 1992. Region-specific expression of a K+ channel gene in brain. Proc. Natl. Acad. Sci. USA 89: 4603.
- 15 Vega-Saenz De Miera, M. Weiser, C. Kentros, D. Lau, H. Moreno, P. Serodio & B. Rudy. 1994. Shaw-related K+ channels in mammals. In Handbook of Membrane Channels. C. Peracchia, Ed. 41. Academic Press, Inc. Orlando, FL.
- 16 Coetzee, W.A., Y., J. Chie, A. Chow, D. Lau, T. McCormack, T. Moreno, M. Nadal, A. Ozaita, D. Pountney, M. Saganich, E. Vega-Saenz De Miera & B. Rudy. 1999. Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci. This volume.
- 17 Rashid, A.J., & R.J. Dunn. 1998. Sequence diversity of voltage-gated potassium channels in an electric fish. Brain Res. Mol. Brain Res. 54: 101.
- 18 Spitzer, N.C., & D. Gurantz. 1996. Xenopus Kv3.3 potassium channel transcripts are developmentally upregulated in the embryonic spinal cord. Soc. Neurosci. Abst. 22: 1753.
- 19 Kentros, C., M. Weiser, E. Vega-Saenz De Miera, K. Morel, H. Baker & B. Rudy. 1992. Alternative splicing of the 5′ untranslated region of a gene encoding K channel components. Soc. Neurosci. Abst. 18.
- 20 Erginel-Unaltuna, N., W.P. Yang & M.A. Blanar. 1998. Genomic organization and expression of KCNJ8/Kir6.1, a gene encoding a subunit of an ATP-sensitive potassium channel. Gene 211: 71.
- 21 Weiser, M., E. Vega-Saenz De Miera, C. Kentros, H. Moreno, L. Franzen, D. Hillman, H. Baker & B. Rudy. 1994. Differential expression of Shaw-related K+ channels in the rat central nervous system, J. Neurosci. 14: 949.
- 22 Hoshi, T., W.N. Zagotta & R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation [see comments]. Science 250: 533.
- 23 Smith-Maxwell, C.J., J.L. Ledwell & R.W. Aldrich. 1998. Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J. Gen Physiol. 111: 399.
- 24 Johnstone, D.B., A. Wei, A. Butler, L. Salkoff & J.H. Thomas. 1997. Behavioral defects in C. elegans egl-36 mutants result from potassium channels shifted in voltage-dependence of activation, Neuron 19: 151.
- 25 Hernández-Pineda, R., A. Chow, Y. Amarillo, H. Moreno, M. Saganich, E. Vega-Saenz De Miera, A. Hernández-Cruz & B. Rudy. 1999. Kv3.1-Kv3.2 heteromultimeric channels underlie a high voltage-activating component of the delayed rectifier K+ current in projecting neurons from the Globus Pallidus. J. Neurophysiol. In press.
- 26 Grissmer, S., A.N. Nguyen, J. Aiyar, D.C. Hanson, R.J. Mather, G.A. Gutman, M.J. Karmilowics, D.D. Auperin & K.G. Chandy. 1994. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol. 45: 1227.
- 27 Critz, S.D., B.A. Wible, H.S. Lopez & A.M. Brown. 1993. Stable expression and regulation of a rat brain K+ channel, J. Neurochem. 60: 1175.
- 28 Kalman, K., A. Nguyen, J. Tseng-Crank, I.D. Dukes, G. Chandy, C.M. Hustad, N.G. Copeland, N.A. Jenkins, H. Mohrenweiser, B. Brandriff, M. Cahalan, G.A. Gutman & K.G. Chandy. 1998. Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a novel mammalian Shaker-related voltagegated potassium channel, Kv1.7. J. Biol. Chem. 273: 5851.
- 29 Harris, R.E., & E.Y. Isacoff. 1996. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels. Biophys. J. 71: 209.
- 30 Ruppersberg, J.P., M. Stocker, O. Pongs, S.H. Heinemann, R. Frank & M. Koenen. 1991. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352: 711.
- 31 Vega-Saenz De Miera, E., & B. Rudy. 1992. Modulation of K+ channels by hydrogen peroxide. Biochem. Biophys. Res. Commun. 186: 1681.
- 32 Serodio, P., C. Kentros & B. Rudy. 1994. Identification of molecular components of A-type channels activating at subthreshold potentials. J. Neurophysiol. 72: 1516.
- 33 Ruppersberg, J.P., R. Frank, O. Pongs & M. STocker. 1991. Cloned neuronal IK(A) channels reopen during recovery from inactivation [see comments]. Nature 353: 657.
- 34 Moreno, H., C. Kentros, E. Bueno, M. Weiser, A. Hernandez, E. Vega-Saenz De Miera, A. Ponce, W. Thornhill & B. Rudy. 1995. Thalamocortical projections have a K+ channel that is phosphorylated and modulated by cAMP-dependent protein kinase. J. Neurosci. 15: 5486.
- 35 McIntosh, P., H. Moreno, B. Robertson, & B. Rudy. 1998. Isoform-specific modulation of rat Kv3 potassium channel splice variants. J. Physiol. 511P: 147.
- 36 Kanemasa, T., L. Gan, T.M. Perney, L.Y. Wang & L.K. Kaczmarek. 1995. Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. J. Neurophysiol. 74: 207.
- 37 Covarrubias, M., A. Wei, L. Salkoff & T.B. Vyas. 1994. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13: 1403.
- 38 Beck, E.J., R.G. Sorensen, S.J. Slater & M. Covarrubias. 1998. Interactions between multiple phosphorylation sites in the inactivation particle of a K+ channel. Insights into the molecular mechanism of protein kinase C action. J. Gen. Physiol. 112: 71.
- 39 Vega-Saenz De Miera, E., H. Moreno & B. Rudy. 1994. Modulation of Kv3.3 K+ channels by oxidation and phosphorylation, in. Soc. Neurosci. Abst. 20: 725.
- 40 Vega-Saenz De Miera, E., H. Moreno & B. Rudy. 1995. Phosphorylation may be required to activate Shaw related K+ channels. Soc. Neurosci. Abst. 21: 505.
- 41 Moreno, H., E. Bueno, A. Hernandez Cruz, A. Ponce & B. Rudy. 1995. Nitric oxide and cGMP modulate a presynaptic K+ channel in vitro. Soc. Neurosci. Abst. 21: 506.
- 42 Moreno, H., M.S. Nadal, E. Vega-Saenz De Miera & B. Rudy. 1999. Modulation of Kv3 potassium Channels by a nitric oxide-activated phosphatase. J. Neurosci. Submitted for publication.
- 43 Shieh, C.C., & G.E. Kirsch. 1994. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ Channels. Biophys. J. 67: 2316.
- 44 Kirsch, G.E., & J.A. Drewe. 1993. Gating-dependent meChanism of 4-aminopyridine block in two related potassium Channels. J. Gen. Physiol. 102: 797.
- 45 Chandy, K.G. & G.A. Gutman. 1995. Voltage gated Channels. In Handbook of Receptors and Channels: Ligand-gated and Voltage-gated Ion Channels. R.A. North, Ed.: 1–71. Boca Raton, FL.
- 46 Barish, M.E., M. Ichikawa, T. Tominaga, G. Matsumoto & T. Iijima. 1996. Enhanced fast synaptic transmission and a delayed depolarization induced by transient potassium current blockade in rat hippocampal slice as studied by optical recording. J. Neurosci. 16: 5672.
- 47 Wu, R.L., & M.E. Barish. 1992. Two pharmacologically and kinetically distinct transient potassium currents in cultured embryonic mouse hippocampal neurons. J. Neurosci. 12: 2235.
- 48 Diochot, S., H. Schweitz, L. Beress & M. Lazdunski. 1998. Sea anemone peptides with a specific blocking activity against the fast inactivating potassium Channel Kv3.4. J. Biol. Chem. 273: 6744.
- 49 McCormach, K., J.W. Lin, L.E. Iverson & B. Rudy. 1990. Shaker K+ Channel subunits from heteromultimeric Channels with novel functional properties. Biochem. Biophys. Res. Commun. 171: 1361.
- 50 Isacoff, E.Y., Y.N. Jan & L.Y. Jan. 1990. Evidence for the formation of heteromultimeric potassium Channels in Xenopus oocytes [see comments]. Nature 345: 530.
- 51 Ruppersberg, J.P., K.H. SCHROTER, B. Sakmann, M. Stocker, S. Sewing & O. Pongs. 1990. Heteromultimeric Channels formed by rat brain potassium-Channel proteins [see comments]. Nature 345: 535.
- 52 MacKinnon, R. 1991. Determination of the subunit stoichiometry of a voltage-activated potassium Channel. Nature 350: 232.
- 53 Christie, M.J., R.A. North, P.B. Osborne, J. Douglass & J.P. Adelman. 1990. Heteropolymeric potassium Channels expressed in Xenopus oocytes from cloned subunits. Neuron 4: 405.
- 54 Dixon, J.E., & D. McKinnon. 1994. Quantitative analysis of potassium Channel mRNA expression in atrial and ventricular muscle of rats. Circ. Res. 75: 252.
- 55 Brahmajothi, M.V., M.J. Morales, R.L. Rasmusson, D.L. CAMPBELL & H.C. STRAUSS. 1997. Heterogeneity in K+ Channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin. Electrophysiol. 20: 388.
- 56 Dixon, J.E., & D. McKinnon. 1996. Potassium Channel mRNA expression in prevertebral and paravertebral sympathetic neurons. Eur. J. Neurosci. 8: 183.
- 57 Grissmer, S., S. Ghanshani, B. Dethlefs, J.D. McPherson, J.J. Wasmuth, G.A. Gutman, M.D. Cahalan & K.G. Chandy. 1992. The Shaw-related potassium Channel gene, Kv3.1, on human chromosome 11, encodes the type 1 K+ Channel in T cells. J. Biol. Chem. 267: 20971.
- 58 Roe, M.W., J.F. Worley, III, A.A. Mittal, A. Kuznetsoc, S. Dasgupta, R.J. Mertz, S.M. Witherspoon, III, N. Blair, M.E. Lancaster, M.S. McIntyre, W.R. Shehee, I.D. Dukes & L.H. Philipson. 1996. Expression and function of pancreatic beta-cell delayed rectifier K+ Channels. Role in stimulus-secretion coupling. J. Biol. Chem. 271: 32241.
- 59 Perney, T.M., J. Marshall, K.A. Martin, S. Hockfield & L.K. Kaczmarek. 1992. Expression of the mRNAs for the Kv3.1 potassium Channel gene in the adult and developing rat brain, J. Neurophysiol. 68: 756.
- 60 Drewe, J.A., S. Verma, G. Frech & R.H. Joho. 1992. Distinct spatial and temporal expression patterns of K+ Channel mRNAs from different subfamilies. J. Neurosci. 12: 538.
- 61 Nguyen, T.D., & G. Jeserich. 1998. Molecular structure and expression of shaker type potassium Channels in glial cells of trout CNS. Neurosci. Res. 51: 284.
- 62 Chow, A., A. Erisir, C. Farb, D.H.P. Lau & B. Rudy. 1998. Kv3.1 and Kv3.2 proteins distingish three subpopulations of GABA-ergic interneurons in the mouse cortex. Soc. Neurosci. Abst. 24: 1579.
- 63 Chow, A., C. Farb, A. Erisir, D. Lau & B. Rudy. 1999. K+ Channel expression distinguishes between two subpopulations of parvalbumin-containing cortical interneurons. J. Neurosci. Submitted for publication.
- 64 Ozaita, A., E. Vega-Saenz De Miera, A. Chow, T.R. Muth, M.J. Caplan & B. Rudy. 1998. Differential targeting of Kv3.1-Kv3.2 containing potassium Channels produced by alternatively-spliced C-termini. Soc. Neurosci. Abst. 24: 1580.
- 65 Ozaita, A., A. Chow, M. Martone, M. Ellisman, E. VEGA-Saenz De Miera & B. Rudy. 1999. Differential subcellular localization of the two Kv3.1 K+ Channel alternatively-spliced isoforms in brain neurons. J. Neurosci Submitted for publication.
- 66 Weiser, M., E. Bueno, C. Sekirnjak, M.E. Martone, H. Baker, D. Hillman, S. Chen, W. Thornhill, M. Ellisman & B. Rudy. 1995. THe potassium Channel subunit Kv3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J. Neurosci. 15: 4298.
- 67 Sekirnjak, C., M.E. Martone, M. Weiser, T. Deerinck, E. Bueno, B. Rudy & M. Ellisman. 1997. Subcellular localization of the K+ Channel subunit Kv3.1b in selected rat CNS neurons. Brain Res. 766: 173.
- 68 Du, J., L. Zhang, M. Weiser, B. Rudy & C.J. McBAIN. 1996. Developmental expression and functional characterization of the potassium-Channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. J. Neurosci. 16: 506.
- 69 Lenz, S., T.M. Perney, Y. Qin, E. Robbins & M.F. Chesselet. 1994. GABA-ergic interneurons of the striatum express the Shaw-like potassium Channel Kv3.1. Synapse 18: 55.
- 70
Perney, T.M., & L.K. Kaczmarek.
1997. Localization of a high threshold potassium Channel in the rat cochlear nucleus.
J. Comp. Neurol.
386: 178.
10.1002/(SICI)1096-9861(19970922)386:2<178::AID-CNE2>3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar
- 71 Sheng, M., Y.J. Liao, Y.N. Jan & L.Y. Jan. 1993. Presynaptic A-current based on heteromulti-meric K+ Channels detected in vivo. Nature 365: 72.
- 72 Wang, H., D.D. Kunkel, T.M. Martin, P.A. Schwartzkroin & B.L. Tempel. 1993. Heteromultimeric K+ Channels in terminal and juxtaparanodal regions of neurons. Nature 365: 75.
- 73 Veh, R. W., R. Lichtinghagen, S. Sewing, F. Wunder, I.M. Grumbach & O. Pongs. 1995. Immunohistochemical localization of five members of the Kv1 Channel subunits: Contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur. J. Neurosci. 7: 2189.
- 74 Laube, G., J. Roper, J.C. Pitt, S. Sewing, U. Kistner, C.C. Garner, O. Pongs & R.W. Veh. 1996. Ultrastructural localization of Shaker-related potassium Channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. Mol. Brain Res. 42: 51.
- 75 Bueno, E., D.H.P. Lau, A. Chow, S. Chen, G. Rameau, C. Sekirnjak, M.E. Martone, M. Ellisman, D. Hillman, B. Rudy & W. Thornhill. 1995. Developmental expression of Kv3.2, Kv3.1, and GIRK K+ Channel proteins in the mammalian CNS. Soc. Neurosci. Abst. 21: 1329.
- 76 Kentros, C. 1996. The expression of the Kv3.2 gene. Ph.D. thesis. New York University Medical School, New York.
- 77 Vullhorst, D., R. Klocke, J.W. Bartsch & H. Jockusch. 1998. Expression of the potassium Channel Kv3.4 in mouse skeletal muscle parallels fiber type maturation and depends on excitation pattern. FEBS Lett. 421: 259.
- 78 Delong, M.R. 1971. Activity of pallidal neurons during movement. J. Neurophysiol. 34: 414.
- 79 Chudler, E.H., & W.K. Dong. 1995. The role of the basal ganglia in nociception and pain. Pain 60: 3.
- 80 Hauber, W., S. Lutz, & M. Munkle. 1998. The effects of globus pallidus lesions on dopamine-dependent motor behaviour in rats. Neuroscience 86: 147.
- 81 Hernandez-Pineda, R., H.-C. A., H. Moreno, A. Chow & B. Rudy. 1996. Identification of voltage-gated K+ Channels containing Kv3 subunits in neurons from the globus pallidus. Soc. Neurosci. Abst. 22: 1754.
- 82 Stefani, A., P. Calabresi, N.B. Mercuri & G. Bernardi. 1992. A-current in rat globus pallidus: A whole-cell voltage clamp study on acutely dissociated neurons. Neurosci. Lett. 144: 4.
- 83 Stefani, A., A. PisaniI, A. Bonci, F. Strata & G. Bernardi. 1995. Outward potassium currents activated by depolarization in rat globus pallidus. Synapse 20: 131.
- 84 Wang, L.Y., L. Gan, I.D. Forsythe & L.K. Kaczmarek. 1998. Contribution of the Kv3.1 potassium Channel to high-frequency firing in mouse auditory neurones. J. Physiol. (London) 509: 183.
- 85 Massengill, J.L., M.A. Smith, D.I. Son & D.K. O'Dowd. 1997. Differential expression of K4-AP currents and Kv3.1 potassium Channel transcripts in cortical neurons that develop distinct firing phenotypes. J. Neurosci. 17: 3136.
- 86 Sillito, A.M. 1984. Functional consideration of the operation of GABAergic inhibitory process in the visual cortex. In Cerebral Cortex. Vol. 2, A.P. Jones, E.G., Ed.: 107. Plenum Press. New York and London.
- 87 Gilbert, C.D. 1993. Circuitry, architecture, and functional dynamics of visual cortex. Cereb. Cortex 3: 373.
- 88 Jones, E.G. 1993. GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex 3: 361.
- 89 Steriade, M., A. Nunez & F. Amzica. 1993. A novel slow (1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. J. Neurosci. 13: 3252.
- 90 Jefferys, J.G., R.D. Traub & M.A. Whittington. 1996. Neuronal networks for induced ‘40 Hz’ rhythms [see comments]. Trends Neurosci. 19: 202.
- 91 Jacobs, K.M., & J.P. Donoghue. 1991. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251: 944.
- 92 Steriade, M. 1997. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance [published erratum appears in Cereb. Cortex 1997 Dec; 7(8): 779], Cereb. Cortex 7: 583.
- 93 Erisi, A., D. Lau, B. Rudy & C.S. Leonard. 1998. Low TEA concentration disrupts high frequency firing of fast spiking cells in mouse somatosensory cortex. Soc. Neurosci. Abst. 24: 632.
- 94 Erisir, A., D. Lau, B. Rudy & C.S. Leonard. 1999. Contrasting effects on high frequency firing of fast spiking cortical interneurons produced by differential K+ Channel blockade. J. Neuroscience Submitted for publication.
- 95 Yang, W.P., P.C. Levesque, W.A. Little, M.L. Conder, P. Ramakrishnan, M.G. Neubauer & M.A. Blanar. 1998. Functional expression of two KvLQT1-related potassium Channels responsible for an inherited idiopathic epilepsy. J. Biol. Chem. 273: 19419.
- 96
Raleigh, R.
1907. On our perception of sound direction.
Phylosophical Magazine
13: 214–232.
10.1080/14786440709463595 Google Scholar
- 97 Brew, H.M., & I.D. Forsythe. 1995. Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J. Neurosci. 15: 8011.
- 98 Wang, L.Y., & L.K. Kaczmarek. 1998. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394: 384.
- 99 Nambu, A., & R. Llinas. 1994. Electrophysiology of globus pallidus neurons in vitro. J. Neurophysiol. 72: 1127.
- 100 Nambu, A., & R. Llinas. 1997. Morphology of globus pallidus neurons: its correlation with electrophysiology in guinea pig brain slices [published erratum appears in J. Comp. Neurol. 1997 Mar 31; 380(1): 154], J. Comp. Neurol. 377: 85.
- 101 Kita, H., & S.T. Kitai. 1991. Intracellular study of rat globus pallidus neurons: Membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 564: 296.
- 102 Klein, M., J. Camardo & E.R. Kandel. 1982. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc. Natl. Acad. Sci. USA 79: 5713.
- 103 Augustine, G.J. 1990. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J. Physiol. (London) 431: 343.
- 104 Jackson, M.B., A. Konnerth & G.J. Augustine. 1991. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc. Natl. Acad. Sci. USA 88: 380.
- 105 Roberts, W.M., R.A. Jacobs & A.J. Hudspeth. 1990. Colocalization of ion Channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10: 3664.
- 106 Anderson, A.J., & A.L. Harvey. 1988. Effects of the facilitatory compounds catechol, guanidine, noradrenaline and phencyclidine on presynaptic currents of mouse motor nerve terminals. Naunyn Schmiedebergs Arch. Pharmacol. 338: 133.
- 107 Vaughan, C.W., S.L. Ingram, M.A. Connor & M.J. Christie. 1997. How opioids inhibit GABA-mediated neurotransmission [see comments]. Nature 390: 611.
- 108 Colmers, W.F., K. Lukowiak & Q.J. Pittman. 1988. Neuropeptide Y action in the rat hippocampal slice: Site and meChanism of presynaptic inhibition. J. Neurosci. 8: 3827.
- 109 Southan, A.P., & D.G. Owen. 1997. The contrasting effects of dendrotoxins and other potassium Channel blockers in the CA1 and dentate gyrus regions of rat hippocampal slices. Br. J. Pharmacol. 122: 335.
- 110 Harvey, A.L., & A.J. Anderson. 1985. Dendrotoxins: Snake toxins that block potassium Channels and facilitate neurotransmitter release. Pharmacol. Ther. 31: 33.
- 111 Robitaille, R., & M.P. Charlton. 1992. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium Channels. J. Neurosci. 12: 297.
- 112 Wheeler, D.B., A. Randall & R.W. Tsien. 1996. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ Channels in rat hippocampus. J. Neurosci. 16: 2226.
- 113 Debanne, D., N.C. Guerineau, B.H. Gahwiler & S.M. Thompson. 1997. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus [published erratum appears in Nature 1997 Dec 4; 390: 536]. Nature 389: 286.
- 114 Ponce, A., E. Vega-Saenz De Miera, C. Kentros, H. Moreno, B. Thornhill & B. Rudy. 1997. K+ Channel subunit isoforms with divergent carboxy-terminal sequences carry distinct membrane targeting signals. J. Membr. Biol. 159: 149.
- 115 Lau, D., M. Castro-Alamancos, A. Chow, A. Ozaita, E. Vega-Saenz De Meira, S. Mathew, J. Gibson, B. Connors & B. Rudy. 1998. Targeted disruption in mouse of a voltage-gated potassium Channel gene that is expressed predominantly in the thalamocortical system. J. Physiol. 511P: 147.
- 116 Lau, D., M. Castro-Alamancos, A. Chow, A. Ozaita, E. Vega-Saenz De Miera, S. Mathew, J. Gibson, B.W. Connors & B. Rudy. 1998. Targeted disruption of a K+ Channel gene that is principally expressed in the presynaptic terminals of thalamic relay neurons in mice. Soc. Neurosci. Abst. 24: 128.
- 117 Ho C.S., R.W. Grane & R.H. Joho. 1997. Pleiotropic effects of a disrupted K+ Channel gene: Reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc. Natl. Acad. Sci. USA 94: 1533.
- 118 Chan, E. 1997. Regulation and function of Kv3.3. Ph.D. thesis. Rockefeller University, New York.
- 119 Joho, R.H., C.S. Ho & G.A. Marks. 1998. Increase in gamma oscillations and altered learning performance in a mouse deficient for the K+ Channel Kv3.1. Soc. Neurosci. 24: 828.