The Parahippocampal Region: Corticocortical Connectivity
Corresponding Author
REBECCA D. BURWELL
Department of Psychology, Brown University, Providence, Rhode Island 02912, USA
Address for correspondence: Rebecca D. Burwell, Ph.D., Department of Psychology, Brown University, Providence, RI 02912. Tel.: (401) 863–9208; fax: (401) 863–1300. e-mail: [email protected]Search for more papers by this authorCorresponding Author
REBECCA D. BURWELL
Department of Psychology, Brown University, Providence, Rhode Island 02912, USA
Address for correspondence: Rebecca D. Burwell, Ph.D., Department of Psychology, Brown University, Providence, RI 02912. Tel.: (401) 863–9208; fax: (401) 863–1300. e-mail: [email protected]Search for more papers by this authorAbstract
Abstract: The parahippocampal region, as defined in this review, comprises the cortical regions that surround the rodent hippocampus including the perirhinal, postrhinal, and entorhinal cortices. The comparable regions in the primate brain are the perirhinal, parahippocampal, and entorhinal cortices. The perirhinal and postrhinal/parahippocampal cortices provide the major polysensory input to the hippocampus through their entorhinal connections and are the recipients of differing combinations of sensory information. The differences in the perirhinal and postrhinal cortical afferentation have important functional implications, in part, because these two regions project with different terminal patterns to the entorhinal cortex. The perirhinal cortex projects preferentially to the lateral entorhinal area (LEA), and the postrhinal cortex projects preferentially to the medial entorhinal area (MEA) and the caudal portion of LEA. Although the perirhinal and postrhinal cortices provide the major cortical input to the entorhinal cortex, the entorhinal cortex itself receives some direct cortical input. An examination of the cortical afferentation of the entorhinal cortex reveals an interesting principle of connectivity among these regions; the composition of the direct neocortical input to the LEA is more similar to that of the perirhinal cortex, and the composition of the direct neocortical input to the MEA is more similar to that of the postrhinal cortex. Thus, polymodal associational input to the LEA and the MEA exhibits some segregation and is organized in parallel. The organization of intrinsic connections for each of the parahippocampal regions also contributes to the segregation of information into parallel pathways.
REFERENCES
- 1 Corkin, S., et al. 1997. H.M.'s medial temporal lobe lesion: findings from magnetic resonance imaging. J. Neurosci. 17 (10): 3964–3979.
- 2 Witter, M.P. 1993. Organization of the entorhinal-hippocampal system: A review of the current anatomical data. Hippocampus 3: 33–44.
- 3 Burwell, R.D., M.P. Witter & D.G. Amaral. 1995. The perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5: 390–408.
- 4 Van Hoesen, G.W. 1982. The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. TINS 5: 345–350.
- 5 Eichenbaum, H., T. Otto & N.J. Cohen. 1994. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17: 449–518.
- 6 Naber, R. 1999. The hippocampal memory system: Functional analysis of parallel pathways through the subiculum. Vol. dissertation. Ponsen & Looijen B.V. Wageningen, the Netherlands.
- 7
Burwell, R.D. & D.G. Amaral.
1998. The perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex.
J. Comp. Neurol.
391 (3): 293–321.
10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X CASPubMedWeb of Science®Google Scholar
- 8 Dolorfo, C.L. & D.G. Amaral. 1998. Entorhinal cortex of the rat: organization of intrinsic connections. J. Comp. Neurol. 398 (1): 49–82.
- 9
Burwell, R.D. & D.G. Amaral.
1998. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices.
J. Comp. Neurol.
398 (2): 179–205.
10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y CASPubMedWeb of Science®Google Scholar
- 10 Naber, P.A., et al. 1997. Parallel input to the hippocampal memory system through peri- and postrhinal cortices. Neuroreport 8 (11): 2617–2621.
- 11 McDonald, A.J. & F. Mascagni. 1996. Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 77 (2): 445–459.
- 12
McIntyre, D.C., M.E. Kelly & W.A. Staines.
1996. Efferent projections of the anterior perirhinal cortex in the rat.
J. Comp. Neurol.
369 (2): 302–318.
10.1002/(SICI)1096-9861(19960527)369:2<302::AID-CNE10>3.0.CO;2-J PubMedWeb of Science®Google Scholar
- 13 Aggleton, J.P. & M.W. Brown. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22: 425–489.
- 14 Dolorfo, C.L. & D.G. Amara. 1998. The entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J. Comp. Neurol. 398 (1): 25–48.
- 15 Suzuki, W.A. & D.G. Amaral. 1994. The perirhinal and parahippocampal cortices of the Macaque monkey: Cortical afferents. J. Comp. Neurol. 350: 497–533.
- 16 Suzuki, W.A. & D.G. Amaral. 1994. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci. 14 (3): 1856–1877.
- 17 Witter, M.P., G.W. Van Hoesen & D.G. Amaral. 1989. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J. Neurosci. 9 (1): 216–228.
- 18 Burwell, R.D. & D.G. Amaral. 1995. The issue of parahippocampal cortex in the rat. Soc. Neurosci. Abstr. 21 (2): 1494.
- 19 Deacon, T.W. et al. 1983. Afferent connections of the perirhinal cortex in the rat. J. Comp. Neurol. 220: 168–190.
- 20 Felleman, D.J. & D.C. Van Essen. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1: 1–47.
- 21 Kreig, W.J.S. 1946. Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J. Comp. Neurol. 84: 277–323.
- 22 Turner, B.H. & J. Zimmer. 1984. The architecture and some of the interconnections of the rat's amygdala and lateral periallocortex. J. Comp. Neurol. 227: 540–557.
- 23 Witter, M.P. et al. 1989. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33: 161–253.
- 24 Jones, E.G. & T.P.S. Powell. 1970. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820.
- 25 Vaudano, E., C.R. Legg & M. Glickstein. 1990. Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study. Eur. J. Neurosci. 3: 317–330.
- 26 Paperna, T. & R. Malach. 1991. Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J. Comp. Neurol. 308: 432–456.
- 27 Luskin, M.B. & J.L. Price. 1983. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216: 264–291.
- 28 Guldin, W.O. & H.J. Markowitsch. 1983. Cortical and thalamic afferent connections of the insular and adjacent cortex of the rat. J. Comp. Neurol. 215: 135–153.
- 29 Beckstead, R.M. 1979. An autoradiographic examination of corticocortical and sub-cortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J. Comp. Neurol. 184: 43–62.
- 30 Takagishi, M. & T. Chiba. 1991. Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res. 566: 26–39.
- 31 Mascagni, F., A.J. McDonald & J.R. Coleman. 1993. Corticoamygdaloid and cortic-ocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 57 (3): 697–715.
- 32 Romanski, L.M. & J.E. LeDoux. 1993. Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb. Cortex 3 (6): 515–532.
- 33 Van Hoesen, G.W. & D.N. Pandya. 1975. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res. 95: 1–24.
- 34 Van Hoesen, G.W. & D.N. Pandya. 1975. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res. 95: 25–38.
- 35 Ruth, R.E., T.J. Collier & A. Routtenberg. 1982. Topography between the entorhinal cortex and the dentate septotemporal axis in rats. I. Medial and intermediate entorhinal projecting cells. J. Comp. Neurol. 209: 69–78.
- 36 Ruth, R.E., T.J. Collier & A. Routtenberg. 1988. Topography between the entorhinal cortex and the dentate septotemporal axis in rats. II. Cells projecting from lateral entorhinal subdivisions. J. Comp. Neurol. 270: 506–516.
- 37 Kohler, C. 1988. Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area. J. Comp. Neurol. 246: 149–169.
- 38 Kohler, C. 1988. Intrinsic connections of the retrohippocampal region in the rat brain: III. The lateral entorhinal area. J. Comp. Neurol. 271: 208–228.
- 39 Dolorfo, C.L. & D.G. Amaral. 1994. Information processing in the entorhinal cortex of the rat: a neuroanatomical study of entorhinal intrinsic connections. Soc. Neurosci. Abstr. 20 (1): 350.
- 40 Amaral, D.G., R. Insausti & W.M. Cowan. 1987. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J. Comp. Neurol. 264: 326–355.
- 41 Van Groen, T., J. Kadish & P.J. Riekkinen. 1998. The projections from the entorhinal cortex to the hippocampus in the mouse. Soc. Neurosci. Abstr. 24 (1): 677.
- 42 Chrobak, J.J. & D.G. Amaral. 1997. Organization of associational connections in the monkey entorhinal cortex. Soc. Neurosci. Abstr. 23 (1): 903.
- 43 Suzuki, W.A. & D.G. Amaral. 1990. Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE. Neurosci. Lett. 115: 43–48.
- 44 McDonald, A.J. 1998. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55: 257–332.
- 45 Burwell, R.D., W.A. Suzuki, et al. 1996. Some observations on the perirhinal and parahippocampal cortices in the rat, monkey, and human brains. In Perception, Memory, and Emotion: Frontier in Neuroscience. T. Ono, Ed. Elsevier. New York.
- 46 Insausti, R., T. Tuñón, et al. 1995. The human entorhinal cortex: a cytoarchitectonic analysis. J. Comp. Neurol. 355: 171–198.