Role of the Nuclei in Eyeblink Conditioning
Corresponding Author
DAVID G. LAVOND
Department of Psychology and Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA
Address for correspondence: David G. Lavond, Department of Psychology and Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520. Voice: 213-740-4041; fax: 213-740-5687; [email protected].Search for more papers by this authorCorresponding Author
DAVID G. LAVOND
Department of Psychology and Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA
Address for correspondence: David G. Lavond, Department of Psychology and Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520. Voice: 213-740-4041; fax: 213-740-5687; [email protected].Search for more papers by this authorAbstract
Abstract: Evidence to date supports the strong conclusion that the cerebellum learns. Classical conditioning of the eyeblink response is critically dependent upon the cerebellum. The issue addressed here is whether cerebellar cortex or deep nuclei form the basic association. Learning occurs with large cerebellar cortical aspirations in rabbits and with a Purkinje-cell-deficient mutation in mice. The learned response is poorly timed, small in amplitude, and inconsistent in its occurrence. Learning nevertheless occurs. Lesions of the interpositus, on the other hand, prevent new learning and abolish previously learned conditioned responses. Small electrolytic lesions, kainic acid lesions, and temporary inactivation (cooling, muscimol, anisomycin) localize learning to the dorsolateral anterior interpositus nucleus. Learning-related unit activity—the signature of the engram—recorded throughout the brain depends on the interpositus. Electrical stimulation of interpositus afferents are needed for conditioning, and the conditioned interpositus has a lowered threshold. Finally, a recent anatomical study with electron microscopy shows synaptic changes in the excitatory inputs to the interpositus with conditioning. The interpositus is responsible for making the basic association between conditioned and unconditioned stimuli, which in turn allows ancillary learning to occur in cerebellar cortex, and possibly brainstem and forebrain.
REFERENCES
- 1 McCormick, D.A., D.G. Lavond, G.A. Clark, et al. 1981. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull. Psychon. Soc. 18: 103–105.
- 2 Yeo, C.H., M.J. Hardiman & M. Glickstein. 1984. Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13: 261–266.
- 3 Yeo, C.H., M.J. Hardiman & M. Glickstein. 1985. Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp. Brain Res. 60: 99–113.
- 4 Lavond, D.G. 2000. Reflections on R.F. Thompson's discovery of the engram. Festschr. Symp.: The Engram Found: A Celebration of the Scientific Contributions of Richard F. Thompson (Organized by T.W. Berger, M. Baudry, and L.W. Swanson), Univ. of Southern California, Los Angeles, CA.
- 5 Lavond, D.G. & S.A. Kanzawa. 2001. Inside the black box. In Model Systems and the Neurobiology of Associative Learning: A Festschrift in Honor of Richard F. Thompson. J.E. Steinmetz, M. Gluck, and P. Solomon, Eds.: 245–269. Erlbaum. Manwah, NJ.
- 6 Lavond, D.G. & S.A. Kanzawa. 2001. Reflections on R.F. Thompson's discovery of the engram. Engram 1: 6–14.
- 7 Lavond, D.G. & M.C. Cartford. 2000. Eye blink conditioning circuitry: tracing, lesion, and reversible lesion experiments. In Eyeblink Classical Conditioning: Animals. D.S. Woodruff-Pak and J.E. Steinmetz, Eds.: 51–80. Kluwer. Boston.
- 8 Thompson, R.F., S. Bao, L. Chen, et al. 1997. Associative learning. Int. Rev. Neurobiol. 41: 151–189.
- 9 Oakley, D.A. & I.S. Russell. 1972. Neocortical lesions and classical conditioning. Physiol. Behav. 8: 915–926.
- 10 Oakley, D.A. & I.S. Russell. 1977. Subcortical storage of Pavlovian conditioning in the rabbit. Physiol. Behav. 18: 931–937.
- 11 Kim, J.J., R.E. Clark & R.F. Thompson. 1995. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav. Neurosci. 109: 195–203.
- 12 Schmaltz, L.W. & J. Theios. 1972. Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J. Comp. Physiol. Psychol. 79: 328–333.
- 13 Enser, D. 1976. A study of classical nictitating membrane conditioning in neodecorticate, hemidecorticate and thalamic rabbits. Ph.D. Thesis, Univ. of Iowa, Iowa City.
- 14 Lavond, D.G., D.A. McCormick, G.A. Clark, et al. 1981. Effects of ipsilateral rostral pontine reticular lesions on retention of classically conditioned nictitating membrane and eyelid responses. Physiol. Psychol. 9: 335–339.
- 15 Desmond, J.E. & J.W. Moore. 1983. A supratrigeminal region implicated in the classically conditioned nictitating membrane response. Brain Res. Bull. 10: 765–773.
- 16 Lavond, D.G., J.S. Lincoln, D.A. McCormick & R.F. Thompson. 1984. Effect of bilateral lesions of the dentate and interpositus cerebellar nuclei on conditioning of heart-rate and nictitating membrane/eyelid responses in the rabbit. Brain Res. 305: 323–330.
- 17 Holt, L., M.D. Mauk & R.F. Thompson. 1984. Effects of lateral cerebellar lesions on classical and operant conditioning. Unpublished manuscript.
- 18 Olton, D.S., J.T. Becker & G.E. Handelmann. 1979. Hippocampus, space and memory. Behav. Brain Sci. 2: 313–365.
- 19 Squire, L.R. 1982. The neurophysiology of human memory. Annu. Rev. Neurosci. 5: 241–273.
- 20 Davis, M., D.S. Gendelman, M.D. Tischler & P.M. Gendelman. 1982. A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2: 791–805.
- 21 Kim, J.J., R.A. Rison & M.S. Fanselow. 1993. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci. 107: 1093–1098.
- 22 Lavond, D.G., T.L. Hembree & R.F. Thompson. 1985. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res. 326: 179–182.
- 23 Clark, G.A., D.A. McCormick, D.G. Lavond & R.F. Thompson. 1984. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 291: 125–136.
- 24 Mamounas, L.A., R.F. Thompson & J. Madden. 1987. Cerebellar GABAergic processes: evidence for critical involvement in a form of simple associative learning in the rabbit. Proc. Natl. Acad. Sci. USA 84: 2101–2105.
- 25 Lavond, D.G., J.E. Steinmetz, M.H. Yokaitis & R.F. Thompson. 1987. Reacquisition of classical conditioning after removal of cerebellar cortex. Exp. Brain Res. 67: 569–593.
- 26 Lavond, D.G. & J.E. Steinmetz. 1989. Acquisition of classical conditioning without cerebellar cortex. Behav. Brain Res. 33: 113–164.
- 27 Clark, R.E. & D.G. Lavond. 1994. Reacquisition of eyeblink classical conditioning following large cerebellar cortical lesions in Dutch belted rabbits. Behav. Brain Res. 61: 101–106.
- 28 Logan, C.G. 1991. Cerebellar cortical involvement in excitatory and inhibitory classical conditioning. Ph.D. Thesis, Stanford Univ., Palo Alto, CA.
- 29 Meyer, D.R. & P.M. Meyer. 1977. Dynamics and bases of recoveries of functions after injuries to the cerebral cortex. Physiol. Psychol. 5: 133–165.
- 30 Meyer, D.R. & P.M. Meyer. 1984. Bases of recoveries from perinatal injuries to the cerebral cortex. In Behavioral Biology of Early Brain Damage. S. Finger and C.R. Almli, Eds.: 211–227. Academic Press. New York.
- 31 Gruart, A. & C.H. Yeo. 1995. Cerebellar cortex and eyeblink conditioning: bilateral regulation of conditioned responses. Exp. Brain Res. 104: 431–448.
- 32 Mojtahedian, S., S. Kanzawa, D. Lavond & R. Thompson. 2001. Effects of bilateral lesions of the cerebellar cortex on eyeblink conditioning. Soc. Neurosci. Abstr. 27: 201.
- 33 Chen, L., S. Bao, J.M. Lockard, et al. 1996. Impaired classical eyeblink conditioning in cerebellar-lesioned & Purkinje cell degeneration (pcd) mutant mice. J. Neurosci. 16: 2829–2838.
- 34 Chen, L., S. Bao & R.F. Thompson. 1999. Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice. Behav. Neurosci. 113: 204–210.
- 35 Clark, R.E., A.A. Zhang & D.G. Lavond. 1992. Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behav. Neurosci. 106: 879–888.
- 36 Clark, R.E. & D.G. Lavond. 1993. Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits. Behav. Neurosci. 107: 264–270.
- 37 Krupa, D.J., J.K. Thompson & R.F. Thompson. 1993. Localization of a memory trace in the mammalian brain. Science 260: 989–991.
- 38 Bracha, V., M.L. Webster, M.K. Stachowiak & J.R. Bloedel. 1995. Injections of anisomycin into the interposed nuclear region affect consolidation of the conditioned eyeblink response. Soc. Neurosci. Abstr. 21: 1222.
- 39 Berger, T.W., B. Alger & R.F. Thompson. 1976. Neuronal substrate of classical conditioning in the hippocampus. Science 192: 483–485.
- 40 McCormick, D.A., D.G. Lavond, N.H. Donegan & R.F. Thompson. 1982. Neuronal responses of the rabbit brainstem and cerebellum during performance of the classically conditioned nictitating membrane/eyelid response. Brain Res. 271: 73–88.
- 41 McCormick, D.A., D.G. Lavond & R.F. Thompson. 1983. Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Res. 271: 73–88.
- 42 McCormick, D.A. & R.F. Thompson. 1984. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane/eyelid response. J. Neurosci. 4: 2811–2822.
- 43 Clark, R.E., E.B. Gohl & D.G. Lavond. 1997. The learning related activity which develops in the pontine nuclei during classical eyeblink conditioning is dependent upon the interpositus nucleus. Learn. Mem. 3: 532–544.
- 44 Clark, R.E. & D.G. Lavond. 1996. Neural unit activity in the trigeminal complex with interpositus or red nucleus inactivation during classical eyeblink conditioning. Behav. Neurosci. 110: 1–9.
- 45 Clark, R.E., A.A. Zhang & D.G. Lavond. 1997. The importance of cerebellar cortex and facial nucleus in acquisition and retention of eyeblink/NM conditioning: evidence for critical unilateral regulation of the conditioned response. Neurobiol. Learn. Mem. 67: 96–111.
- 46 Bao, S., L. Chen & R.F. Thompson. 2000. Learning- and cerebellum-dependent neuronal activity in the lateral pontine nucleus. Behav. Neurosci. 114: 254–261.
- 47 McCormick, D.A., G.A. Clark, D.G. Lavond and R.F. Thompson. 1982. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79: 2731–2742.
- 48 Lavond, D.G., S.A. Kanzawa, D. Ivkovich & R.E. Clark. 1994. Transfer of learning but not memory after unilateral cerebellar lesion in rabbits. Behav. Neurosci. 108: 284–293.
- 49 Steinmetz, J.E., D.G. Lavond & R.F. Thompson. 1985. Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bull. Psychon. Soc. 23: 245–248.
- 50 Steinmetz, J.E., D.J. Rosen, P.F. Chapman, et al. 1986. Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation CS. I. Pontine nuclei and middle cerebellar peduncle stimulation. Behav. Neurosci. 100: 871–880.
- 51 Steinmetz, J.E., D.J. Rosen, D.S. Woodruff-Pak, et al. 1986. Rapid transfer of training occurs when direct mossy fiber stimulation is used as a conditioned stimulus for classical conditioning. Neurosci. Res. 3: 606–616.
- 52 Mauk, M.D., J.E. Steinmetz & R.F. Thompson. 1986. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl. Acad. Sci. USA 83: 5349–5353.
- 53 Steinmetz, J.E., D.G. Lavond & R.F. Thompson. 1989. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3: 225–233.
- 54 Poulos, A.M. & R.F. Thompson. 2001. Extracellular stimulation of the interpositus nucleus as a conditioned stimulus during interstimulus interval shifts in delay eye-blink conditioning. Soc. Neurosci. Abstr. 27: 1689.
- 55 Chapman, P.F., J.E. Steinmetz & R.F. Thompson. 1988. Classical conditioning does not occur when direct stimulation of the red nucleus or cerebellar nuclei is the unconditioned stimulus. Brain Res. 442: 97–104.
- 56 Tracy, J., J.K. Thompson, D.J. Krupa & R.F. Thompson. 1998. Evidence of plasticity in the ponto-cerebellar CS pathway during classical conditioning of the eyeblink response in the rabbit. Behav. Neurosci. 112: 267–285.
- 57 Kleim, J.A., J.H. Freeman, R. Bruneau, et al. 2002. Synapse formation is associated with memory storage in the cerebellum. Proc. Natl. Acad. Sci. USA 99: 13228–13231.
- 58 Solomon, P.R., E.F. Vander Schaff, R.F. Thompson & D.G. Weisz. 1986. Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response. Behav. Neurosci. 100: 729–744.
- 59 Patterson, M.M. 1975. Effects of forward and backward classical conditioning procedures on a spinal cat hindlimb flexor nerve response. Physiol. Psychol. 3: 86–91.
- 60 Patterson, M.M., C.F. Cegavske & R.F. Thompson. 1973. Spinal conditioning. Bull. Psychon. Soc. 1: 139–141.
- 61 Patterson, M.M., J.E. Steinmetz, A.L. Beggs & A.G. Romano. 1982. Associative processes in spinal reflexes. In Conditioning: Representation of Involved Neural Functions. C.D. Woody, Ed.: 637–650. Plenum. New York.