Temporal Organization of Activity in the Cerebellar Cortex: A Manifesto for Synchrony
PHILIPPE ISOPE
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Search for more papers by this authorSTÉPHANE DIEUDONNÉ
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Search for more papers by this authorCorresponding Author
BORIS BARBOUR
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Address for correspondence: Boris Barbour, Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France. Voice: +33 1 44 32 37 36; fax: +33 1 44 32 38 87; [email protected].Search for more papers by this authorPHILIPPE ISOPE
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Search for more papers by this authorSTÉPHANE DIEUDONNÉ
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Search for more papers by this authorCorresponding Author
BORIS BARBOUR
Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 75230 Paris Cedex 05, France
Address for correspondence: Boris Barbour, Laboratoire de Neurobiologie (CNRS UMR 8544), Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France. Voice: +33 1 44 32 37 36; fax: +33 1 44 32 38 87; [email protected].Search for more papers by this authorAbstract
Abstract: The issues of temporal coding and the temporal organization of activity have aroused a great deal of interest in sensory systems, cortex, thalamus, and hippocampus. Strangely, despite the important timing roles attributed to the cerebellum, little consideration has been given to the organization of activity within the cerebellar circuitry. In fact, there is evidence of a remarkable temporal patterning of activity in even the earliest cerebellar recordings. The evidence for the existence of high-frequency oscillations in the cerebellar cortex is reviewed and possible mechanisms are discussed; one involves the synchrony of parallel fiber inputs to Purkinje cells. It is shown how synchronous and oscillatory activity can enable extremely precise timing and also how they can maximize the information storage capacity of the cerebellar cortex.
REFERENCES
- 1 Adrian, E.D. 1935. Discharge frequencies in the cerebral and cerebellar cortex. J. Physiol. (London) 83: 33P–33P.
- 2 Dow, R.S. 1938. The electrical activity of the cerebellum and its functional significance. J. Physiol. (London) 94: 67–86.
- 3 Brookhart, J.M., G. Moruzzi & R.S. Snider. 1958. Origin of cerebellar waves. J. Neurophysiol. 14: 181–190.
- 4 Crepax, P. & F. Infantellina. 1955. L'attivita elettrica del limbo isolato di corteccia cerebellare di gatto. Boll. Soc. Ital. Biol. Sper. 31: 1229–1231.
- 5 Morruzi, G. 1957. Esperimenti e considerazioni sull'elettronarcosi cerebellare. Arch. Sci. Biol. (Bologna) 41: 91–104.
- 6 Bell, C.C. & R.J. Grimm. 1969. Discharge properties of Purkinje cells recorded on single and double microelectrodes. J. Neurophysiol. 32: 1044–1055.
- 7 Ebner, T.J. & J.R. Bloedel. 1981. Correlation between activity of Purkinje cells and its modification by natural peripheral stimuli. J. Neurophysiol. 45: 948–961.
- 8 O'Keefe, J. 1976. Place units in the hippocampus of freely moving rats. Exp. Neurol. 51: 78–109.
- 9 Ylinen, A. et al. 1995. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15: 30–46.
- 10 Chrobak, J.J. & G. Buzsaki. 1996. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J. Neurosci. 16: 3056–3066.
- 11 Csicsvari, J. et al. 1999. Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci. 19: RC20.
- 12 Gibson, J.R., M. Beierlein & B.W. Connors. 1999. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402: 75–79.
- 13 Beierlein, M., J.R. Gibson & B.W. Connors. 2000. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3: 904–910.
- 14 Galarreta, M. & S. Hestrin. 1999. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402: 72–75.
- 15 Schmitz, D. et al. 2001. Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron 31: 831–840.
- 16 Mann-Metzer, P. & Y. Yarom. 1999. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19: 3298–3306.
- 17 Mann-Metzer, P. & Y. Yarom. 2000. Electrotonic coupling synchronizes interneuron activity in the cerebellar cortex. Prog. Brain Res. 124: 115–122.
- 18 Marr, D. 1969. A theory of cerebellar cortex. J. Physiol. 202: 437–470.
- 19
Albus, J.S.
1971. A theory of cerebellar function.
Math. Biosci.
10: 26–51.
10.1016/0025-5564(71)90051-4 Google Scholar
- 20 Dieudonné, S. 1998. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J. Physiol. (London) 510: 845–866.
- 21 Maex, R. & E. De Schutter. 1998. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J. Neurophysiol. 80: 2521–2537.
- 22
Edgely, S.A. & M. Lidierth. 1987. The discharges of cerebellar Golgi cells during locomotion in the cat.
J. Physiol. (London)
392: 315–332.
10.1113/jphysiol.1987.sp016782 Google Scholar
- 23 Vos, B.P., A. Volny-Luraghi & E. De Schutter. 1999. Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur. J. Neurosci. 11: 2621–2634.
- 24 Granit, R. & C.G. Phillips. 1956. Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (London) 133: 520–547.
- 25 Eccles, J.C., R. Llinas & K. Sasaki. 1966. Intracellularly recorded responses of the cerebellar Purkinje cells. Exp. Brain Res. 1: 161–183.
- 26 Eccles, J.C., M. Ito & J. Szentagothai. 1967. The Cerebellum as a Neuronal Machine. Springer-Verlag. Berlin, Heidelberg, New York.
- 27 Goossens, J. et al. 2001. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J. Neurosci. 21: 5813–5823.
- 28 de Zeeuw, C.I. et al. 1997. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J. Neurophysiol. 77: 1747–1758.
- 29 Hausser, M. & B.A. Clark. 1997. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19: 665–678.
- 30 Ito, M. 1989. Long-term depression. Annu. Rev. Neurosci. 12: 85–102.
- 31 Mateos, J.M. et al. 2000. Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at the parallel fibre-Purkinje cell synapse in the rat cerebellar cortex. J. Neurochem. 74: 1301–1309.
- 32 Casado, M., S. Dieudonne & P. Ascher. 2000. Presynaptic N-methyl-D-aspartate receptors at the parallel fiber- Purkinje cell synapse. Proc. Natl. Acad. Sci. USA 97: 11593–11597.
- 33 Ichise, T. et al. 2000. mGluR1 in cerebellar Purkinje cells is essential for long-term depression, synapse elimination and motor coordination. Science 288: 1832–1835.
- 34 Casado, M., P. Isope & P. Ascher. 2002. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33: 123–130.
- 35 Takechi, H., J. Eilers & A. Konnerth. 1998. A new class of synaptic response involving calcium release in dendritic spines. Nature 396: 757–760.
- 36 Lester, R.A. et al. 1990. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346: 565–567.
- 37 Nowak, L. et al. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–5.
- 38 Pouille, F. & M. Scanziani. 2001. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293: 1159–1163.
- 39 Barbour, B. 1993. Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11: 759–769.