Broca's Area in Language, Action, and Music
Luciano Fadiga
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Italian Institute of Technology (IIT), Genova, Italy
Search for more papers by this authorLaila Craighero
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Search for more papers by this authorAlessandro D’Ausilio
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Search for more papers by this authorLuciano Fadiga
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Italian Institute of Technology (IIT), Genova, Italy
Search for more papers by this authorLaila Craighero
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Search for more papers by this authorAlessandro D’Ausilio
DSBTA–Section of Human Physiology, University of Ferrara, Ferrara, Italy
Search for more papers by this authorAbstract
The work of Paul Broca has been of pivotal importance in the localization of some higher cognitive brain functions. He first reported that lesions to the caudal part of the inferior frontal gyrus were associated with expressive deficits. Although most of his claims are still true today, the emergence of novel techniques as well as the use of comparative analyses prompts modern research for a revision of the role played by Broca's area. Here we review current research showing that the inferior frontal gyrus and the ventral premotor cortex are activated for tasks other than language production. Specifically, a growing number of studies report the involvement of these two regions in language comprehension, action execution and observation, and music execution and listening. Recently, the critical involvement of the same areas in representing abstract hierarchical structures has also been demonstrated. Indeed, language, action, and music share a common syntactic-like structure. We propose that these areas are tuned to detect and represent complex hierarchical dependencies, regardless of modality and use. We speculate that this capacity evolved from motor and premotor functions associated with action execution and understanding, such as those characterizing the mirror-neuron system.
References
- 1
McManus, C.
2002. Right Hand, Left Hand. The Origins of Asymmetry in Brains, Bodies, and Atoms. Harvard University Press.
Cambridge
,
MA
.
- 2
Dronkers, N.F.
et al
. 2007. Paul Broca's historic cases: high resolution MR imaging of the brains of Leborgne and Lelong.
Brain
130: 1432–1441.
- 3
Alexander, M.P.,
M.A. Naeser &
C. Palumbo. 1990. Broca's area aphasias: aphasia after lesions including the frontal operculum.
Neurology
40: 353–362.
- 4
Caplan, D.,
N. Hildebrandt &
N. Makris. 1996. Location of lesions in stroke patients with deficits in syntactic processing in sentence comprehension.
Brain
119: 933–949.
- 5
Berker, E.A.,
A.H. Berker &
A. Smith. 1986. Translation of Broca's 1865 report. Localization of speech in the third left frontal convolution.
Arch. Neurol.
43: 1065–1072.
- 6
Penfield, W. &
L. Roberts. 1959. Speech and Brain Mechanisms. Princeton University Press.
Princeton
,
NJ
.
- 7
Ojemann, G.
et al
. 1989. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients.
J. Neurosurg.
71: 316–326.
- 8
Schaffler, L.
et al
. 1993. Comprehension deficits elicited by electrical stimulation of Broca's area.
Brain
116: 695–715.
- 9
Fiebach, C.J.,
S.H. Vos &
A.D. Friederici. 2004. Neural correlates of syntactic ambiguity in sentence comprehension for low and high span readers.
J. Cogn. Neurosci.
16: 1562–1575.
- 10
Matsumoto, R.
et al
. 2004. Functional connectivity in the human language system: a cortico-cortical evoked potential study.
Brain
127: 2316–2330.
- 11
Londei, A.
et al
. 2007. Brain network for passive word listening as evaluated with ICA and Granger causality.
Brain. Res. Bull.
72: 284–292.
- 12
Sonty, S.P.
et al
. 2007. Altered effective connectivity within the language network in primary progressive aphasia.
J. Neurosci.
27: 1334–1345.
- 13
Catani, M.,
D.K. Jones &
D.H. Ffytche. 2005. Perisylvian language networks of the human brain.
Ann. Neurol.
57: 8–16.
- 14
Glasser, M.F. &
J.K. Rilling
2008. DTI tractography of the human brain's language pathways.
Cereb. Cortex
18: 2471–2482.
- 15
Rilling, J.K.
et al
. 2008. The evolution of the arcuate fasciculus revealed with comparative DTI.
Nat. Neurosci.
11: 426–428.
- 16
Pulvermuller, F.
2005. Brain mechanisms linking language and action.
Nat. Rev. Neurosci.
6: 576–582.
- 17
Warren, J.E.,
R.J. Wise &
J.D. Warren. 2005. Sounds do-able: auditory-motor transformations and the posterior temporal plane.
Trends Neurosci.
28: 636–643.
- 18
Skipper, J.I.,
H.C. Nusbaum &
S.L. Small. 2006. Lending a helping hand to hearing: another motor theory of speech perception. In
Action to Language via the Mirror Neuron System. M.A. Arbib, Ed.: 250–285. Cambridge University Press.
Cambridge
,
UK
.
- 19
Petrides, M. &
D.N. Pandya. 1997. Comparative architectonic analysis of the human and the macaque frontal cortex. In
Handbook of Neuropsychology. F. Boller &
J. Grafman, Eds.: 17–58. Elsevier.
Amsterdam
.
- 20
Matelli, M.,
G. Luppino &
G. Rizzolatti. 1985. Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey.
Behav. Brain Res.
18: 125–136.
- 21
Petrides, M.,
G. Cadoret &
S. Mackey. 2005. Orofacial somatomotor responses in the macaque monkey homologue of Broca's area.
Nature
435: 1235–1238.
- 22
Hepp-Reymond, M.C.
et al
. 1994. Force-related neuronal activity in two regions of the primate ventral premotor cortex.
Can. J. Physiol. Pharmacol.
72: 571–579.
- 23
Rizzolatti, G.
et al
. 1988. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements.
Exp. Brain Res.
71: 491–507.
- 24
Murata, A.
et al
. 1997. Object representation in the ventral premotor cortex (area F5) of the monkey.
J. Neurophysiol.
78: 2226–2230.
- 25
Gallese, V.
et al
. 1996. Action recognition in the premotor cortex.
Brain
119: 593–609.
- 26
Umilta, M.A.
et al
. 2001. I know what you are doing: a neurophysiological study.
Neuron
31: 155–165.
- 27
Rizzolatti, G.,
L. Fogassi &
V. Gallese. 2001. Neurophysiological mechanisms underlying the understanding and imitation of action.
Nat. Rev. Neurosci.
2: 661–670.
- 28
Fadiga, L.,
L. Craighero &
A.C. Roy. 2006. Broca's area: a speech area?
In
Broca's Region. Y. Grodzinsky &
K. Amunts, Eds.: 137–152. Oxford University Press.
New York
.
- 29
Gerlach, C.,
I. Law &
O.B. Paulson. 2002. When action turns into words: activation of motor-based knowledge during categorization of manipulable objects.
J. Cogn. Neurosci.
14: 1230–1239.
- 30
Kellenbach, M.L.,
M. Brett &
K. Patterson. 2003. Actions speak louder than functions: the importance of manipulability and action in tool representation.
J. Cogn. Neurosci.
15: 30–46.
- 31
Binkofski, F.
et al
. 1999. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study.
Eur. J. Neurosci.
11: 3276–3286.
- 32
Gerardin, E.
et al
. 2000. Partially overlapping neural networks for real and imagined hand movements.
Cereb. Cortex
10: 1093–1104.
- 33
Lotze, M. &
U. Halsband. 2006. Motor imagery.
J. Physiol. Paris
99: 386–395.
- 34
Grafton, S.T.
et al
. 1997. Premotor cortex activation during observation and naming of familiar tools.
NeuroImage
6: 231–236.
- 35
Grezes, J. &
J. Decety. 2002. Does visual perception of object afford action? Evidence from a neuroimaging study.
Neuropsychologia
40: 212–222.
- 36
Fadiga, L.
et al
. 1995. Motor facilitation during action observation: a magnetic stimulation study.
J. Neurophysiol.
73: 2608–2611.
- 37
Buccino, G.
et al
. 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study.
Eur. J. Neurosci.
13: 400–404.
- 38
Binkofski, F. &
G. Buccino. 2006. The role of ventral premotor cortex in action execution and action understanding.
J. Physiol. Paris
99: 396–405.
- 39
Grezes, J.,
N. Costes &
J. Decety. 1999. The effects of learning and intention on the neural network involved in the perception of meaningless actions.
Brain
122: 1875–1887.
- 40
Johnson-Frey, S.H.
et al
. 2003. Actions or hand-object interactions? Human inferior frontal cortex and action observation.
Neuron
39: 1053–1058.
- 41
Fadiga, L.,
L. Craighero &
E. Olivier. 2005. Human motor cortex excitability during the perception of others’ action.
Curr. Opin. Neurobiol.
15: 213–218.
- 42
Rizzolatti, G. &
L. Craighero. 2004. The mirror-neuron system.
Annu. Rev. Neurosci.
27: 169–192.
- 43
Daniloff, J.K.
et al
. 1982. Gesture recognition in patients with aphasia.
J. Speech. Hear. Disord.
47: 43–49.
- 44
Wang, L. &
H. Goodglass. 1992. Pantomime, praxis, and aphasia.
Brain Lang.
42: 402–418.
- 45
Tranel, D.
et al
. 2003. Neural correlate of conceptual knowledge for actions.
Cogn. Neuropsych.
20: 409–432.
- 46
Saygin, A.P.
et al
. 2004. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates.
Neuropsychologia
42: 1788–1804.
- 47
Goldenberg, G.
1996. Defective imitation of gestures in patients with damage in the left or right hemispheres.
J. Neurol. Neurosurg. Psychiatry
61: 176–180.
- 48
Pazzaglia, M.
et al
. 2008. Neural underpinnings of gesture discrimination in patients with limb apraxia.
J. Neurosci.
28: 3030–3041.
- 49
Fazio, F.
et al
. 2009. Encoding of human action in Broca's area.
Brain
Accepted for publication.
- 50
Kohler, E.
et al
. 2002. Hearing sounds, understanding actions: action representation in mirror neurons.
Science
297: 846–848.
- 51
Pizzamiglio, L.
et al
. 2005. Separate neural systems for processing action- or non-action-related sounds.
NeuroImage
24: 852–861.
- 52
Gazzola, V.,
L. Aziz-Zadeh &
C. Keysers. 2006. Empathy and the somatotopic auditory mirror system in humans.
Curr. Biol.
16: 1824–1829.
- 53
Lewis, J.W.
et al
. 2005. Distinct cortical pathways for processing tool versus animal sounds.
J. Neurosci.
25: 5148–5158.
- 54
Warren, J.E.
et al
. 2006. Positive emotions preferentially engage an auditory-motor “mirror” system.
J. Neurosci.
26: 13067–13075.
- 55
Calvo-Merino, B.
et al
. 2006. Seeing or doing? Influence of visual and motor familiarity in action observation.
Curr. Biol.
16: 1905–1910.
- 56
Aglioti, S.M.
et al
. 2008. Action anticipation and motor resonance in elite basketball players.
Nat. Neurosci.
11: 1109–1116.
- 57
Elbert, T.
et al
. 1995. Increased cortical representation of the fingers of the left hand in string players.
Science
270: 305–307.
- 58
Pascual-Leone, A.
et al
. 1995. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills.
J. Neurophysiol.
74: 1037–1045.
- 59
Pantev, C.
et al
. 1998. Increased auditory cortical representation in musicians.
Nature
392: 811–814.
- 60
Schlaug, G.
et al
. 1995. In vivo evidence of structural brain asymmetry in musicians.
Science
267: 699–701.
- 61
Rosenkranz, K.
et al
. 2007. Motorcortical excitability and synaptic plasticity is enhanced in professional musicians.
J. Neurosci.
27: 5200–5206.
- 62
Munte, T.F.
et al
. 2002. The musician's brain as a model of neuroplasticity.
Nat. Rev. Neurosci.
3: 473–478.
- 63
Zatorre, R.J.,
J.L. Chen &
V.B. Penhune. 2007. When the brain plays music: auditory-motor interactions in music perception and production.
Nat. Rev. Neurosci.
8: 547–558.
- 64
Haueisen, J. &
T.R. Knosche. 2001. Involuntary motor activity in pianists evoked by music perception.
J. Cogn. Neurosci.
13: 786–792.
- 65
Bangert, M. &
E.O. Altenmuller. 2003. Mapping perception to action in piano practice: a longitudinal DC-EEG study.
BMC Neurosci.
4: 26.
- 66
Bangert, M.
et al
. 2006. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction.
NeuroImage
30: 917–926.
- 67
D’Ausilio, A.
et al
. 2006. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece.
Eur. J. Neurosci.
24: 955–958.
- 68
Lahav, A.,
E. Saltzman &
G. Schlaug. 2007. Action representation of sound: audiomotor recognition network while listening to newly acquired actions.
J. Neurosci.
27: 308–314.
- 69
Zatorre, R.J. &
A.R. Halpern. 2005. Mental concerts: musical imagery and auditory cortex.
Neuron
47: 9–12.
- 70
Langheim, F.J.
et al
. 2002. Cortical systems associated with covert music rehearsal.
NeuroImage
16: 901–908.
- 71
Gernsbacher, M.A. &
M.P. Kaschak. 2003. Neuroimaging studies of language production and comprehension.
Annu. Rev. Psychol.
54: 91–114.
- 72
D’Ausilio, A.
2007. The role of the mirror system in mapping complex sounds into actions.
J. Neurosci.
27: 5847–5848.
- 73
Patel, A.D.
2003. Language, music, syntax and the brain.
Nat. Neurosci.
6: 674–681.
- 74
Maess, B.
et al
. 2001. Musical syntax is processed in Broca's area: an MEG study.
Nat. Neurosci.
4: 540–545.
- 74a.
Molnar-Szakacs, I. &
K. Overy. 2006. Music and mirror neurons: from motion to ‘e’motion.
Soc. Cogn. Affect. Neurosci. 1: 235–241.
- 75
Koelsch, S.
et al
. 2000. Brain indices of music processing: “nonmusicians” are musical.
J. Cogn. Neurosci.
12: 520–541.
- 76
Koelsch, S.
et al
. 2002. Bach speaks: a cortical “language-network” serves the processing of music.
NeuroImage
17: 956–966.
- 77
Tillmann, B.,
P. Janata &
J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming.
Brain Res. Cogn. Brain Res.
16: 145–161.
- 78
Friederici, A.D.
2002. Towards a neural basis of auditory sentence processing.
Trends Cogn. Sci.
6: 78–84.
- 79
Koelsch, S.
2006. Significance of Broca's area and ventral premotor cortex for music-syntactic processing.
Cortex
42: 518–520.
- 80
James, W.
1890. The Principles of Psychology. Holt.
New York
.
- 81
Gainotti, G.
et al
. 1995. Neuroanatomical correlates of category-specific semantic disorders: a critical survey.
Memory
3: 247–264.
- 82
Grafton, S.T. &
A.F. Hamilton. 2007. Evidence for a distributed hierarchy of action representation in the brain.
Hum. Mov. Sci.
26: 590–616.
- 83
Dominey, P.F.
et al
. 2003. Neurological basis of language and sequential cognition: evidence from simulation, aphasia, and ERP studies.
Brain Lang.
86: 207–225.
- 84
Sirigu, A.
et al
. 1998. Distinct frontal regions for processing sentence syntax and story grammar.
Cortex
34: 771–778.
- 85
Koechlin, E. &
T. Jubault. 2006. Broca's area and the hierarchical organization of human behavior.
Neuron
50: 963–974.
- 86
Bahlmann, J.,
R.I. Schubotz &
A.D. Friederici. 2008. Hierarchical artificial grammar processing engages Broca's area.
NeuroImage
42: 525–534.
- 87
Gervain, J.
et al
. 2008. The neonate brain detects speech structure.
Proc. Natl. Acad. Sci. USA
105: 14222–14227.