Propriospinal transmission of the locomotor command signal in the neonatal rat
Kristine C. Cowley
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Search for more papers by this authorEugene Zaporozhets
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Search for more papers by this authorBrian J. Schmidt
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Department of Internal Medicine, Section of Neurology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
Search for more papers by this authorKristine C. Cowley
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Search for more papers by this authorEugene Zaporozhets
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Search for more papers by this authorBrian J. Schmidt
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Department of Internal Medicine, Section of Neurology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
Search for more papers by this authorAbstract
Long direct bulbospinal projections are known to convey descending activation of locomotor networks. Less is understood about the role, if any, of propriospinal mechanisms in this function. Here we review our recent studies on propriospinal neurons in the in vitro neonatal rat brainstem-spinal cord preparation. Neurochemical suppression of synaptic activity in the cervicothoracic spinal cord blocked locomotor-like activity, suggesting synaptic relays make a critical contribution to descending transmission of the locomotor signal. Staggered contralateral hemisections in the cervicothoracic region, intended to eliminate all long direct bulbospinal transmission, failed to suppress locomotion, suggesting the propriospinal system alone is sufficient. Midsagittal lesion experiments showed that locomotor-related commissural components are required for rhythm generation in response to electrical stimulation of the brainstem and are redundantly distributed. No single segment was essential, although a bi-directional gradient was noted, centered on the thoracolumbar junction. These results strongly favor a role for propriospinal mechanisms in the activation of locomotion and suggest that propriospinal neurons are a logical target for interventions to restore locomotor function after spinal cord injury.
References
- 1
Graham Brown, T.
1911. The intrinsic factors in the act of progression in the mammal.
Proc. R. Soc. B.
84: 308–319.
10.1098/rspb.1911.0077 Google Scholar
- 2 Graham Brown, T. 1914. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48: 18–46.
- 3 Bussel, B., A. Roby-Brami, P. Azouvi, et al . 1988. Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain 111(Pt 5): 1235–1245.
- 4 Calancie, B., B. Needham-Shropshire, P. Jacobs, et al . 1994. Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117(Pt 5): 1143–1159.
- 5 Dietz, V., G. Colombo & L. Jensen. 1994. Locomotor activity in spinal man. Lancet 344: 1260–1263.
- 6 Hultborn, H. & J. B. Nielsen. 2007. Spinal control of locomotion—from cat to man. Acta Physiol. (Oxf) 189: 111–121.
- 7 Noga, B.R., D.J. Kriellaars & L.M. Jordan. 1991. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. J. Neurosci. 11(6): 1691–1700.
- 8 Jane, J.A., J.P. Evans & L.E. Fisher. 1964. An investigation concerning the restitution of motor function following injury to the spinal cord. J. Neurosurg. 21: 167–171.
- 9 Afelt, Z. 1974. Functional significance of ventral descending tracts of the spinal cord in the cat. Acta Neurobiol. Exp. 34: 393–407.
- 10 Eidelberg, E., J.L. Story, J.G. Walden, et al . 1981. Anatomical correlates of return of locomotor function after partial spinal cord lesions in cats. Exp. Brain Res. 42: 81–88.
- 11 Little, J.W., R.M. Harris & R.C. Sohlberg. 1988. Locomotor recovery following subtotal spinal cord lesions in a rat model. Neurosci. Lett. 87: 189–194.
- 12 Schucht, P., O. Raineteau, M. E. Schwab, et al . 2002. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp. Neurol. 176: 143–153.
- 13 Stelzner, D. J. & J. M. Cullen. 1991. Do propriospinal projections contribute to hindlimb recovery when all long tracts are cut in neonatal or weanling rats? Exp. Neurol. 114: 193–205.
- 14 You, S.W., B.Y. Chen, H.L. Liu, et al . 2003. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. Restor. Neurol. Neurosci. 21: 39–45.
- 15 Brustein, E. & S. Rossignol. 1998. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80: 1245–1267.
- 16 Bem, T., T. Gorska, H. Majczynski, et al . 1995. Different patterns of fore-hindlimb coordination during overground locomotion in cats with ventral and lateral spinal lesions. Exp. Brain Res. 104: 70–80.
- 17 Rossignol, S., C. Chau, E. Brustein, et al . 1996. Locomotor capacities after complete and partial lesions of the spinal cord. Acta Neurobiol. Exp. 56: 449–463.
- 18 Shik, M.L. 1983. Action of the brainstem locomotor region on spinal stepping generators via propriospinal pathways. In Spinal Cord Reconstruction. C. C. Kao, R. P. Bunge & P. J. Reier, Eds.: 421–434. Raven Press. New York .
- 19 Yamaguchi, T. 1986. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats. Brain Res. 379: 125–136.
- 20 Miller, S., J. Van Der Burg & F.G.A. Van Der Meche. 1975. Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 91: 217–237.
- 21 Ballion, B., D. Morin & D. Viala. 2001. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. 14: 1727–1738.
- 22 Juvin, L., J. Simmers & D. Morin. 2005. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J. Neurosci. 25: 6025–6035.
- 23 Reed, W.R., A. Shum-Siu, S.M. Onifer, et al . 2006. Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 142: 1195–1207.
- 24 English, A.W., J. Tigges & P.R. Lennard. 1985. Anatomical organization of long ascending propriospinal neurons in the cat spinal cord. J. Comp. Neurol. 240: 349–358.
- 25 Matsushima, T. & S. Grillner. 1990. Intersegmental co-ordination of undulatory movements—a “trailing oscillator” hypothesis. NeuroReport 1: 97–100.
- 26 Cohen, A.H., G.B. Ermentrout, T. Kiemel, et al . 1992. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci. 15: 434–438.
- 27 Miller, W.L. & K.A. Sigvardt. 2000. Extent and role of multisegmental coupling in the lamprey spinal locomotor pattern generator. J. Neurophysiol. 83: 465–476.
- 28 Buchanan, J.T. 1992. Neural network simulations of coupled locomotor oscillators in the lamprey spinal cord. Biol. Cybern. 66: 367–374.
- 29 Berkowitz, A. & P.S. Stein. 1994. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses. J. Neurosci. 14: 5105–5119.
- 30 Dietz, V. 2002. Do human bipeds use quadrupedal coordination? Trends Neurosci. 25: 462–467.
- 31 Zaporozhets, E., K.C. Cowley & B.J. Schmidt. 2006. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J. Physiol. 572: 443–458.
- 32 Zaporozhets, E., K.C. Cowley & B.J. Schmidt. 2004. A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation. J. Neurosci. Meth. 139: 33–41.
- 33 Cowley, K.C., E. Zaporozhets & B.J. Schmidt. 2008. Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J. Physiol. 586: 1623–1635.
- 34 Cowley, K.C., E. Zaporozhets, R.A. Joundi, et al . 2009. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord. J. Neurophysiol. 101: 1171–1178.
- 35 Cajal, S.R.y. 1995. Histology of the Nervous System (Vol 1): General Principles, Spinal Cord, Spinal Ganglia, Medulla & Pons. Translated by N Swanson. & L. W. Swanson. Oxford University Press. Oxford .
- 36 Sherrington, C.S. & E.E. Laslett. 1903. Observations on some spinal reflexes and the interconnection of spinal segments. J. Physiol. 29: 58–96.
- 37 1993. Propriospinal. In The New Shorter Oxford English Dictionary, Vol. 2. Oxford University Press. Oxford .
- 38 Miller, K.E., V.D. Douglas, A.B. Richards, et al . 1998. Propriospinal neurons in the C1–C2 spinal segments project to the L5-S1 segments of the rat spinal cord. Brain Res. Bull. 47: 43–47.
- 39 Kostyuk, P.G. & D.A. Vasilenko. 1979. Spinal interneurons. Annu. Rev. Physiol. 41: 115–126.
- 40 Burke, D. 2001. Clinical relevance of the putative C-3–4 propriospinal system in humans. Muscle Nerve. 24: 1437–1439.
- 41 Jankowska, E. 1992. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38: 335–378.
- 42 Illert, M., A. Lundberg & R. Tanaka. 1977. Integration in descending motor pathways controlling the forelimb in the cat. Part 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Exp. Brain Res. 29: 323–346.
- 43 Lloyd, D.P.C. 1941. Activity in neurons of the bulbospinal correlation system. J. Neurophysiol. 4: 115–134.
- 44 Peterson, B.W., R.A. Maunz, N.G. Pitts, et al . 1975. Patterns of projection and braching of reticulospinal neurons. Exp. Brain Res. 23: 333–351.
- 45 Martin, G.F., T. Cabana & A.O. Humbertson, Jr. 1981. Evidence for collateral innervation of the cervical and lumbar enlargements of the spinal cord by single reticular and raphe neurons. Studies using fluorescent markers in double-labeling experiments on the North American opossum. Neurosci. Lett. 24: 1–6.
- 46 Atsuta, Y., P. Abraham, T. Iwahara, et al . 1991. Control of locomotion in vitro: II. Chemical stimulation. Somatosens Mot. Res. 8: 55–63.
- 47 Smith, J.C., J.L. Feldman & B.J. Schmidt. 1988. Neural mechanisms generating locomotion studied in mammalian brainstem-spinal cord in vitro. FASEB J. 2: 2283–2288.
- 48 Atsuta, Y., E. Garcia-Rill & R.D. Skinner. 1988. Electrically induced locomotion in the in vitro brainstem-spinal cord preparation. Brain Res. Dev. Brain Res. 42: 309–312.
- 49 Liu, J. & L.M. Jordan. 2005. Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J. Neurophysiol. 94: 1392–1404.
- 50 Kuwana, S., Y. Okada & T. Natsui. 1998. Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat. Brain Res. 786: 194–204.
- 51 Piccolino, M., A. Pignatelli & L. A. Rakotobe. 1999. Calcium-independent release of neurotransmitter in the retina: a “copernican” viewpoint change. Prog. Retin. Eye Res. 18: 1–38.
- 52 Jordan, L.M. & B.J. Schmidt. 2002. Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies? Prog. Brain Res. 137: 125–139.
- 53 Barbeau, H. & S. Rossignol. 1987. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412: 84–95.
- 54 Forssberg, H., S. Grillner, J. Halbertsma, et al . 1980. The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol. Scand. 108: 283–295.
- 55 Kudo, N. & T. Yamada. 1987. N-methyl-D,L-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci. Lett. 75: 43–48.
- 56 Cowley, K.C. & B.J. Schmidt. 1997. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. J. Neurophysiol. 77: 247–259.
- 57 Kremer, E. & A. Lev-Tov. 1997. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J. Neurophysiol. 77: 1155–1170.
- 58 Kato, M. 1988. Longitudinal myelotomy of lumbar spinal cord has little effect on coordinated locomotor activities of bilateral hindlimbs of the chronic cats. Neurosci. Lett. 93: 259–263.
- 59 Samara, R.F. & S.N. Currie. 2007. Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming. J. Neurophysiol. 98: 2223–2231.
- 60 Jackson, A.W., D.F. Horinek, M.R. Boyd, et al . 2005. Disruption of left–right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. J. Neurophysiol. 94: 2031–2044.
- 61 Bonnot, A. & D. Morin. 1998. Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse. Brain Res. 793: 136–148.
- 62 Cheng, J., R.B. Stein, K. Jovanovic, et al . 1998. Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus Maculatus) spinal cord. J. Neurosci. 18: 4295–4304.
- 63 Ho, S. & M.J. O’Donovan. 1993. Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J. Neurosci. 13: 1354–1371.
- 64 McCrea, D. A. & I. A. Rybak. 2008. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57: 134–146.
- 65 Lassek, A.M. & P.A. Anderson. 1961. Motor function after spaced contralateral hemisections in the spinal cord. Neurology 11(Pt 1): 362–365.
- 66 Nathan, P.W. & M.C. Smith. 1973. Effects of two unilateral cordotomies on the motility of the lower limbs. Brain 96: 471–494.
- 67 Harris, R.M., J.W. Little & B. Goldstein. 1994. Spared descending pathways mediate locomotor recovery after subtotal spinal cord injury. Neurosci. Lett. 180: 37–40.
- 68 Kato, M., S. Murakami, K. Yasuda & H. Hirayama. 1984. Disruption of fore- and hindlimb coordination during overground locomotion in cats with bilateral serial hemisection of the spinal cord. Neurosci. Res. 2: 27–47.
- 69 Courtine, G., B. Song, R.R. Roy, et al . 2008. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14: 69–74.
- 70 McClellan, A.D. 1994. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. J. Neurophysiol. 72: 847–860.
- 71 Rouse, D.T., Jr. & A.D. McClellan. 1997. Descending propriospinal neurons in normal and spinal cord-transected lamprey. Exp. Neurol. 146: 113–124.
- 72 Sholomenko, G.N. & K.R. Delaney. 1998. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in ovo. Exp. Neurol. 154: 430–451.
- 73 Bareyre, F.M., M. Kerschensteiner, O. Raineteau, et al . 2004. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 7: 269–277.
- 74 Vavrek, R., J. Girgis, W. Tetzlaff, et al . 2006. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129: 1534–1545.
- 75 Yakovenko, S., J. Kowalczewski & A. Prochazka. 2007. Intraspinal stimulation caudal to spinal cord transections in rats. Testing the propriospinal hypothesis. J. Neurophysiol. 97: 2570–2574.