The IL-17 pathway as a major therapeutic target in autoimmune diseases
Fang Shen
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorNatasha K. Crellin
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorWenjun Ouyang
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorFang Shen
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorNatasha K. Crellin
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorWenjun Ouyang
Department of Immunology, Genentech, Inc., South San Francisco, California
Search for more papers by this authorAbstract
Th17 cells are a subset of T helper cells that have been recently found to play important functions in host defense and the pathogenesis of various human autoimmune and inflammatory diseases. Th17 cells produce IL-17A, IL-17F, IL-22, and IL-21, of which IL-17A and IL-17F mediate many of the downstream pathologic functions of these cells. IL-17A and IL-17F signal through IL-17RA and IL-17RC heterodimeric receptors that are mainly expressed on tissue epithelial cells and fibroblasts. While IL-17A and IL-17F are important for host defense against many extracellular pathogens, they can also cause excessive tissue damage and exacerbate proinflammatory responses during autoimmunity. The IL-17 pathway, therefore, is a primary therapeutic target downstream of Th17 cells.
References
- 1 O’Garra, A., L. Steinman & K. Gijbels. 1997. CD4+ T-cell subsets in autoimmunity. Curr. Opin. Immunol. 9: 872–883.
- 2 Chitnis, T. et al . 2001. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108: 739–747.
- 3 Zhang, G.X. et al . 2003. Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J. Immunol. 171: 4485–4492.
- 4 Cua, D.J. et al . 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421: 744–748.
- 5 Aggarwal, S., N. Ghilardi, M.H. Xie, et al . 2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278: 1910–1914.
- 6 Langrish, C.L. et al . 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201: 233–240.
- 7 Harrington, L.E. et al . 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6: 1123–1132.
- 8 Park, H. et al . 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6: 1133–1141. [Epub 2005 Oct 1132]
- 9 Ouyang, W., J.K. Kolls & Y. Zheng. 2008. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28: 454–467.
- 10 Rouvier, E., M.F. Luciani, M.G. Mattei, et al . 1993. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150: 5445–5456.
- 11 Yao, Z. et al . 1995. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3: 811–821.
- 12 Akimzhanov, A.M., X.O. Yang & C. Dong. 2007. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282: 5969–5972.
- 13 Gomez-Rodriguez, J. et al . 2009. Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 31: 587–597.
- 14 Yao, Z. et al . 1995. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155: 5483–5486.
- 15 Starnes, T. et al . 2001. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol. 167: 4137–4140.
- 16 Hymowitz, S.G. et al . 2001. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20: 5332–5341.
- 17 Gerhardt, S. et al . 2009. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. J. Mol. Biol. 394: 905–921.
- 18 Chang, S.H. & C. Dong. 2007. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17: 435–440.
- 19 Wright, J.F. et al . 2007. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282: 13447–13455. [Epub 12007 Mar 13413]
- 20 Bettelli, E. et al . 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238. [Epub 2006 Apr 2030]
- 21 Mangan, P.R. et al . 2006. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234.
- 22 Veldhoen, M., R.J. Hocking, C.J. Atkins, et al . 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189.
- 23 Yang, X.O. et al . 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282: 9358–9363.
- 24 Korn, T. et al . 2007. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487.
- 25 Zhou, L. et al . 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8: 967–974. [Epub 2007 Jun 2020]
- 26 Acosta-Rodriguez, E.V., G. Napolitani, A. Lanzavecchia & F. Sallusto. 2007. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8: 942–949.
- 27 Wilson, N.J. et al . 2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8: 950–957.
- 28 Manel, N., D. Unutmaz & D.R. Littman. 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol. 9: 641–649.
- 29 Volpe, E. et al . 2008. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 9: 650–657.
- 30 Li, T.S., X.N. Li, Z.J. Chang, et al . 2006. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway. Cell Signal. 18: 1287–1298.
- 31 Marie, J.C., J.J. Letterio, M. Gavin & A.Y. Rudensky. 2005. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201: 1061–1067.
- 32 Martinez, G.J. et al . 2009. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284: 35283–35286.
- 33 Das, J. et al . 2009. Transforming growth factor beta is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med. 206: 2407–2416.
- 34 Lee, Y.K. et al . 2009. Late developmental plasticity in the T helper 17 lineage. Immunity 30: 92–107.
- 35 Laurence, A. et al . 2007. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26: 371–381.
- 36 Cejas, P.J. et al . 2010. TRAF6 inhibits Th17 differentiation and TGF-{beta}-mediated suppression of IL-2. Blood 115: 4750–4757.
- 37 Quintana, F.J. et al . 2008. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453: 65–71.
- 38 Batten, M. et al . 2006. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 7: 929–936.
- 39 Stumhofer, J.S. et al . 2006. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7: 937–945.
- 40 Diveu, C. et al . 2009. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol. 182: 5748–5756.
- 41 Brustle, A. et al . 2007. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8: 958–966.
- 42 Chung, Y. et al . 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30: 576–587.
- 43 Zhang, F., G. Meng & W. Strober. 2008. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9: 1297–1306.
- 44 Schraml, B.U. et al . 2009. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460: 405–409.
- 45 Okamoto, K. et al . 2010. IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature 464: 1381–1385.
- 46 Martin, B., K. Hirota, D.J. Cua, et al . 2009. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31: 321–330.
- 47 Sutton, C.E. et al . 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31: 331–341.
- 48 Crellin, N.K., S. Trifari, C.D. Kaplan, et al . 2010. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med. 207: 281–290.
- 49 Cupedo, T. et al . 2009. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC +CD127+ natural killer-like cells. Nat. Immunol. 10: 66–74.
- 50 Takatori, H. et al . 2009. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206: 35–41.
- 51 Hueber, A.J. et al . 2010. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 184: 3336–3340.
- 52 Li, L. et al . 2010. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120: 331–342.
- 53 Guo, P. et al . 2009. Dual nature of the adaptive immune system in lampreys. Nature 459: 796–801.
- 54 Ishigame, H. et al . 2009. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30: 108–119.
- 55 McAllister, F. et al . 2005. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. 175: 404–412.
- 56 Ye, P. et al . 2001. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am. J. Respir. Cell Mol. Biol. 25: 335–340.
- 57 Toy, D. et al . 2006. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177: 36–39.
- 58 Hu, Y. et al . 2010. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184: 4307–4316.
- 59 Wright, J.F. et al . 2008. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181: 2799–2805.
- 60 Ely, L.K., S. Fischer & K.C. Garcia. 2009. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol. 10: 1245–1251.
- 61 Kramer, J.M. et al . 2006. Evidence for ligand-independent multimerization of the IL-17 receptor. J. Immunol. 176: 711–715.
- 62 Kuestner, R.E. et al . 2007. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol. 179: 5462–5473.
- 63 You, Z. et al . 2007. Differential expression of IL-17RC isoforms in androgen-dependent and androgen-independent prostate cancers. Neoplasia 9: 464–470.
- 64 Novatchkova, M., A. Leibbrandt, J. Werzowa, et al . 2003. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28: 226–229.
- 65 Maitra, A. et al . 2007. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl. Acad. Sci. USA 104: 7506–7511.
- 66 Poltorak, A. et al . 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088.
- 67 Ho, A.W. et al . 2010. IL-17rc is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J. Immunol. 185: 1063–1070.
- 68 Qian, Y. et al . 2007. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8: 247–256. [Epub 2007 Feb 2004]
- 69 Chang, S.H., H. Park & C. Dong. 2006. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281: 35603–35607. [Epub 32006 Oct 35611]
- 70 Kang, Z. et al . 2010. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32: 414–425.
- 71 Swaidani, S. et al . 2009. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J. Immunol. 182: 1631–1640.
- 72 Liu, C. et al . 2009. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2: ra63.
- 73 Schwandner, R., K. Yamaguchi & Z. Cao. 2000. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191: 1233–1240.
- 74 Deng, L. et al . 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361.
- 75 Wang, C. et al . 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351.
- 76 Ahonen, C. et al . 2002. The CD40-TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nat. Immunol. 3: 451–456.
- 77 Shalom-Barak, T., J. Quach & M. Lotz. 1998. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J. Biol. Chem. 273: 27467–27473.
- 78 Ruddy, M.J., F. Shen, J.B. Smith, et al . 2004. Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment. J. Leukoc. Biol. 76: 135–144.
- 79 Shen, F., Z. Hu, J. Goswami & S.L. Gaffen. 2006. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281: 24138–24148.
- 80 Shen, F., M.J. Ruddy, P. Plamondon & S.L. Gaffen. 2005. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells. J. Leukoc. Biol. 77: 388–399.
- 81 Yamamoto, M. et al . 2004. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430: 218–222.
- 82 Karlsen, J.R., N. Borregaard & J.B. Cowland. 2010. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with IL-17 and TNF-{alpha} is controlled by I{kappa}B-{zeta} but neither by C/EBP-{beta} nor by C/EBP-{delta}. J. Biol. Chem.
- 83 Kao, C.Y., C. Kim, F. Huang & R. Wu. 2008. Requirements for two proximal NF-kappaB binding sites and IkappaB-zeta in IL-17A-induced human beta-defensin 2 expression by conducting airway epithelium. J. Biol. Chem. 283: 15309–15318.
- 84 Lu, Y.C. et al . 2009. Differential role for c-Rel and C/EBPbeta/delta in TLR-mediated induction of proinflammatory cytokines. J. Immunol. 182: 7212–7221.
- 85 Litvak, V. et al . 2009. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat. Immunol. 10: 437–443.
- 86 Ruddy, M.J. et al . 2004. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279: 2559–2567.
- 87 Shen, F. et al . 2009. IL-17 receptor signaling inhibits C/EBPbeta by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2: ra8.
- 88 Hartupee, J. et al . 2009. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J. Immunol. 182: 1660–1666.
- 89 Witowski, J. et al . 2000. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. J. Immunol. 165: 5814–5821.
- 90 Kawaguchi, M. et al . 2003. Induction of C-X-C chemokines, growth-related oncogene alpha expression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of Raf1-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 pathway. J. Pharmacol. Exp. Ther. 307: 1213–1220.
- 91 Liang, S.C. et al . 2007. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J. Immunol. 179: 7791–7799.
- 92 Ye, P. et al . 2001. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194: 519–527.
- 93 Khader, S.A. et al . 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8: 369–377.
- 94 Kawaguchi, M. et al . 2007. The IL-17F signaling pathway is involved in the induction of IFN-gamma-inducible protein 10 in bronchial epithelial cells. J. Allergy Clin. Immunol. 119: 1408–1414.
- 95 Numasaki, M. et al . 2005. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J. Immunol. 175: 6177–6189.
- 96 Roussel, L. et al . 2010. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J. Immunol. 184: 4531–4537.
- 97 Kim, K.W. et al . 2007. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40 interaction. Arthritis Rheum. 56: 1076–1086.
- 98 Van Kooten, C. et al . 1998. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol. 9: 1526–1534.
- 99 Kao, C.Y. et al . 2005. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J. Immunol. 175: 6676–6685.
- 100 Kotake, S. et al . 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103: 1345–1352.
- 101 Faour, W.H., A. Mancini, Q.W. He & J.A. Di Battista. 2003. T-cell-derived interleukin-17 regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of the p38 mitogen-activated protein kinase cascade: role of distal sequences in the 3’-untranslated region of COX-2 mRNA. J. Biol. Chem. 278: 26897–26907.
- 102 Stamp, L.K., L.G. Cleland & M.J. James. 2004. Upregulation of synoviocyte COX-2 through interactions with T lymphocytes: role of interleukin 17 and tumor necrosis factor-alpha. J. Rheumatol. 31: 1246–1254.
- 103 Goetz, D.H. et al . 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 10: 1033–1043.
- 104 Chan, Y.R. et al . 2009. Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J. Immunol. 182: 4947–4956.
- 105 Kao, C.Y. et al . 2004. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J. Immunol. 173: 3482–3491.
- 106 Wiehler, S. & D. Proud. 2007. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 293: L505–515.
- 107 Liang, S.C. et al . 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203: 2271–2279.
- 108 Conti, H.R. et al . 2009. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206: 299–311.
- 109 Lubberts, E. et al . 2003. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J. Immunol. 170: 2655–2662.
- 110 Moran, E.M. et al . 2009. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res. Ther. 11: R113.
- 111 Sylvester, J., A. Liacini, W.Q. Li & M. Zafarullah. 2004. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal. 16: 469–476.
- 112 Koenders, M.I. et al . 2005. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52: 3239–3247.
- 113 Aujla, S.J. et al . 2008. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14: 275–281.
- 114 Chung, D.R. et al . 2003. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J. Immunol. 170: 1958–1963.
- 115 Raffatellu, M. et al . 2008. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14: 421–428.
- 116 Kelly, M.N. et al . 2005. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73: 617–621.
- 117 Huang, W., L. Na, P.L. Fidel & P. Schwarzenberger. 2004. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190: 624–631. [Epub 2004 Jun 2022]
- 118 Romani, L. et al . 2008. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451: 211–215.
- 119 Zelante, T. et al . 2007. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37: 2695–2706.
- 120 Rudner, X.L., K.I. Happel, E.A. Young & J.E. Shellito. 2007. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect. Immun. 75: 3055–3061.
- 121 Chabaud, M. et al . 1999. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42: 963–970.
- 122 Kim, K.W. et al . 2005. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res. Ther. 7: R139–R148.
- 123 Ziolkowska, M. et al . 2000. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J. Immunol. 164: 2832–2838.
- 124 Honorati, M.C. et al . 2001. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford) 40: 522–527.
- 125 Cai, L. et al . 2001. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine 16: 10–21.
- 126 Kirkham, B.W. et al . 2006. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 54: 1122–1131.
- 127 Lubberts, E. et al . 2001. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol. 167: 1004–1013.
- 128 Nakae, S., A. Nambu, K. Sudo & Y. Iwakura. 2003. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171: 6173–6177.
- 129 Lubberts, E. et al . 2008. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis. Cytokine 41: 84–91. [Epub 2007 Nov 2026]
- 130 Lubberts, E. et al . 2004. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50: 650–659.
- 131 Bush, K.A., K.M. Farmer, J.S. Walker & B.W. Kirkham. 2002. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 46: 802–805.
- 132 Lundy, S.K., S. Sarkar, L.A. Tesmer & D.A. Fox. 2007. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res. Ther. 9: 202.
- 133 Shahrara, S., S.R. Pickens, A. Dorfleutner & R.M. Pope. 2009. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182: 3884–3891.
- 134 Sato, K. et al . 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203: 2673–2682.
- 135 Lubberts, E., L.A. Joosten, F.A. van de Loo, et al . 2000. Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum. 43: 1300–1306.
- 136 Martel-Pelletier, J., F. Mineau, D. Jovanovic, et al . 1999. Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). Arthritis Rheum. 42: 2399–2409.
- 137 Benderdour, M. et al . 2002. Interleukin 17 (IL-17) induces collagenase-3 production in human osteoarthritic chondrocytes via AP-1 dependent activation: differential activation of AP-1 members by IL-17 and IL-1beta. J. Rheumatol. 29: 1262–1272.
- 138 Koenders, M.I., L.A. Joosten & W.B. Van Den Berg. 2006. Potential new targets in arthritis therapy: interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Ann. Rheum. Dis. 65(Suppl 3): iii29–iii33.
- 139 Zrioual, S. et al . 2009. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182: 3112–3120.
- 140 Yang, X.O. et al . 2008. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205: 1063–1075. [Epub 2008 Apr 1014]
- 141 Komiyama, Y. et al . 2006. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177: 566–573.
- 142 Hofstetter, H.H. et al . 2005. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol. 237: 123–130. [Epub 2005 Dec 2028]
- 143 Matusevicius, D. et al . 1999. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5: 101–104.
- 144 Lock, C. et al . 2002. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8: 500–508.
- 145 Tzartos, J.S. et al . 2008. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172: 146–155.
- 146 Kebir, H. et al . 2007. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13: 1173–1175.
- 147 Huppert, J. et al . 2010. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 24: 1023–1034.
- 148 Reboldi, A. et al . 2009. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10: 514–523.
- 149 Hurst, S.D. et al . 2002. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169: 443–453.
- 150 Laan, M. et al . 1999. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol. 162: 2347–2352.
- 151 Finkelman, F.D., S.P. Hogan, G.K. Hershey, et al . 2010. Importance of cytokines in murine allergic airway disease and human asthma. J. Immunol. 184: 1663–1674.
- 152 Schnyder-Candrian, S. et al . 2006. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203: 2715–2725.
- 153 Rickel, E.A. et al . 2008. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181: 4299–4310.
- 154 Wilson, R.H. et al . 2009. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 180: 720–730.
- 155 Oda, N. et al . 2005. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am. J. Respir. Crit. Care Med. 171: 12–18.
- 156 Hellings, P.W. et al . 2003. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Cell. Mol. Biol. 28: 42–50.
- 157 Song, C. et al . 2008. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol. 181: 6117–6124.
- 158 Nakae, S. et al . 2002. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17: 375–387.
- 159 Wong, C.K. et al . 2001. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol. 125: 177–183.
- 160 Agache, I., C. Ciobanu, C. Agache & M. Anghel 2010. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med. 104: 1131–1137.
- 161 Kawaguchi, M. et al . 2001. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J. Immunol. 167: 4430–4435.
- 162 Kawaguchi, M. et al . 2006. IL-17F sequence variant (His161Arg) is associated with protection against asthma and antagonizes wild-type IL-17F activity. J. Allergy Clin. Immunol. 117: 795–801. [Epub 2006 Feb 2014]
- 163 Ramsey, C.D., R. Lazarus, C.A. Camargo Jr., et al . 2005. Polymorphisms in the interleukin 17F gene (IL17F) and asthma. Genes Immun. 6: 236–241.
- 164 Ogawa, A., A. Andoh, Y. Araki, et al . 2004. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110: 55–62.
- 165 Ito, R. et al . 2008. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem. Biophys. Res. Commun. 377: 12–16.
- 166 O’Connor, W. et al . 2009. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10: 603–609.
- 167 Ivanov, I.I. et al . 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 4: 337–349.
- 168 Fujino, S. et al . 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70.
- 169 Sugihara, T. et al . 2010. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin. Exp. Immunol.. 160: 386–393.
- 170 Annunziato, F. et al . 2007. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204: 1849–1861.
- 171 Seiderer, J. et al . 2008. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm. Bowel Dis. 14: 437–445.
- 172 Arisawa, T. et al . 2008. The influence of polymorphisms of interleukin-17A and interleukin-17F genes on the susceptibility to ulcerative colitis. J. Clin. Immunol. 28: 44–49.
- 173 Ma, H.L. et al . 2008. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J. Clin. Invest. 118: 597–607.
- 174 Teunissen, M.B., C.W. Koomen, R. de Waal Malefyt, et al . 1998. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111: 645–649.
- 175 Lowes, M.A. et al . 2008. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128: 1207–1211.
- 176 Fujishima, S. et al . 2010. Involvement of IL-17F via the induction of IL-6 in psoriasis. Arch. Dermatol. Res. 302: 499–505.
- 177 Harper, E.G. et al . 2009. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Invest. Dermatol. 129: 2175–2183.
- 178 Nakae, S., Y. Iwakura, H. Suto & S.J. Galli. 2007. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J. Leukoc. Biol. 81: 1258–1268.
- 179 Chiang, E.Y. et al . 2009. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat. Med. 15: 766–773.
- 180 Hueber, W. et al . 2010. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2: 52ra72.
- 181 Genovese, M.C. et al . 2010. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 62: 929–939.