Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction
Pauline Belujon
Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAnthony A. Grace
Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorPauline Belujon
Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAnthony A. Grace
Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
Search for more papers by this authorAbstract
Stress is one of the major factors in drug abuse, particularly in relapse and drug-seeking behavior. However, the mechanisms underlying the interactions between stress and drug abuse are unclear. For many years, studies have focused on the role of the dopaminergic reward system in drug abuse. Our results, for example, show that increased dopaminergic activity is induced by drug sensitization and different stressors via potentiation of the ventral subiculum–nucleus accumbens (NAc) pathway. Although the role of the norepinephrine (NE) system in stress is well known, its involvement in drug abuse has received less attention. This review explores the different mechanisms by which stressors can modulate the ventral subiculum–accumbens pathway, and how these modulations can induce alterations in the behavioral response to drug administration. In particular, we will focus on two main afferents to the NAc, the basolateral amygdala and the ventral subiculum of the hippocampus, and their interactions with the locus coeruleus–norepinephrine system.
References
- 1
Chen, B. T.,
F. W. Hopf &
A. Bonci. 2010. Synaptic plasticity in the mesolimbic system: therapeutic implications for substance abuse.
Ann. N. Y. Acad. Sci.
1187: 129–139.
- 2
Deadwyler, S. A.
2010. Electrophysiological correlates of abused drugs: relation to natural rewards.
Ann. N. Y. Acad. Sci.
1187: 140–147.
- 3
Koob, G. F. &
M. Le Moal. 2001. Drug addiction, dysregulation of reward, and allostasis.
Neuropsychopharmacology
24: 97–129.
- 4
Wise, R. A. &
P. P. Rompre. 1989. Brain dopamine and reward.
Annu. Rev. Psychol.
40: 191–225.
- 5
Schultz, W.
1998. Predictive reward signal of dopamine neurons.
J. Neurophysiol.
80: 1–27.
- 6
Russo, S. J.
et al.
2010
The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens.
Trends Neurosci.
33: 267–276.
- 7
O’Brien, C. P.
2005. Anticraving medications for relapse prevention: a possible new class of psychoactive medications.
Am. J. Psychiatry.
162: 1423–1431.
- 8
Shaham, Y.
et al.
2003. The reinstatement model of drug relapse: history, methodology and major findings.
Psychopharmacology (Berlin). 168: 3–20.
- 9
Gawin, F. H. &
H. D. Kleber. 1986. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers.
Clinical observations. Arch. Gen. Psychiatry. 43: 107–113.
- 10
Lu, L.
et al.
2004. Cocaine seeking over extended withdrawal periods in rats: different time courses of responding induced by cocaine cues versus cocaine priming over the first 6 months.
Psychopharmacology (Berlin). 176: 101–108.
- 11
Neisewander, J. L.
et al.
2000. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment.
J. Neurosci.
20: 798–805.
- 12
Sinha, R.
2001. How does stress increase risk of drug abuse and relapse?
Psychopharmacology (Berl). 158: 343–359.
- 13
Bouton, M. E. &
R. C. Bolles. 1979. Role of conditioned contextual stimuli in reinstatement of extinguished fear.
J. Exp. Psychol. Anim. Behav. Process. 5: 368–378.
- 14
Bouton, M. E. &
D. A. King. 1983. Contextual control of the extinction of conditioned fear: tests for the associative value of the context.
J. Exp. Psychol. Anim. Behav. Process.
9: 248–265.
- 15
Piazza, P. V. &
M. Le Moal. 1998. The role of stress in drug self-administration.
Trends Pharmacol. Sci.
19: 67–74.
- 16
Antelman, S. M.
et al.
1980. Interchangeability of stress and amphetamine in sensitization.
Science. 207: 329–331.
- 17
Fanselow, M. S.
2000. Contextual fear, gestalt memories, and the hippocampus.
Behav. Brain. Res.
110: 73–81.
- 18
Jarrard, L. E.
1995. What does the hippocampus really do?
Behav. Brain. Res.
71: 1–10.
- 19
Maren, S.
1999. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats.
Behav. Neurosci.
113: 283–290.
- 20
Sharp, P. E.
1999. Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events.
Hippocampus. 9: 432–443.
- 21
Mueller, N. K.,
C. M. Dolgas &
J. P. Herman. 2006. Regulation of forebrain GABAergic stress circuits following lesion of the ventral subiculum.
Brain. Res.
1116: 132–142.
- 22
Lodge, D. J. &
A. A. Grace. 2006. The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation.
Neuropsychopharmacology. 31: 1356–1361.
- 23
Lodge, D. J. &
A. A. Grace. 2008. Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization.
J. Neurosci.
28: 7876–7882.
- 24
Correll, C. M.,
J. A. Rosenkranz &
A. A. Grace. 2005. Chronic cold stress alters prefrontal cortical modulation of amygdala neuronal activity in rats.
Biol. Psychiatry.
58: 382–391.
- 25
Rosenkranz, J. A. &
A. A. Grace. 2002. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning.
Nature. 417: 282–287.
- 26
Vouimba, R. M.
et al
. 2004. Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats.
Eur. J. Neurosci.
19: 1887–1894.
- 27
Wang, X. Y.
et al.
2008. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala.
J. Neurosci.
28: 5602–5610.
- 28
French, S. J.,
J. C. Hailstone &
S. Totterdell. 2003. Basolateral amygdala efferents to the ventral subiculum preferentially innervate pyramidal cell dendritic spines.
Brain. Res.
981: 160–167.
- 29
Grace, A. A. &
B. S. Bunney. 1983. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates.
Neuroscience. 10: 317–331.
- 30
Grace, A. A. &
B. S. Bunney. 1984. The control of firing pattern in nigral dopamine neurons: single spike firing.
J. Neurosci.
4: 2866–2876.
- 31
Grace, A. A. &
B. S. Bunney. 1984. The control of firing pattern in nigral dopamine neurons: burst firing.
J. Neurosci.
4: 2877–2890.
- 32
Floresco, S. B.
et al.
2003. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.
Nat. Neurosci.
6: 968–973.
- 33
Lodge, D. J. &
A. A. Grace. 2006. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons.
Proc. Natl. Acad. Sci. U. S. A.
103: 5167–5172.
- 34
Groenewegen, H. J.
et al.
1987. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin.
Neuroscience
23: 103–120.
- 35
Sinden, J. D.,
L. E. Jarrard &
J. A. Gray. 1988. The effects of intra-subicular ibotenate on resistance to extinction after continuous or partial reinforcement.
Exp. Brain. Res.
73: 315–319.
- 36
Herman, J. P. &
N. K. Mueller. 2006. Role of the ventral subiculum in stress integration.
Behav. Brain. Res.
174: 215–224.
- 37
Sun, W. &
G. V. Rebec. 2003. Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats.
J. Neurosci.
23: 10258–10264.
- 38
Robinson, T. E. &
K. C. Berridge. 2000. The psychology and neurobiology of addiction: an incentive-sensitization view.
Addiction. 95 (Suppl 2): S91–S117.
- 39
Post, R. M. &
H. Rose. 1976. Increasing effects of repetitive cocaine administration in the rat.
Nature. 260: 731–732.
- 40
Goto, Y. &
A. A. Grace. 2005. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization.
Neuron. 47: 255–266.
- 41
Pacak, K. &
M. Palkovits. 2001. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders.
Endocr. Rev.
22: 502–548.
- 42
O’Mara, S.
2005. The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us.
J. Anat.
207: 271–282.
- 43
Fendler, K.,
G. Karmos &
G. Telegdy. 1961. The effect of hippocampal lesion on pituitary-adrenal function.
Acta. Physiol. Acad. Sci. Hung.
20: 293–297.
- 44
Kant, G. J.,
J. L. Meyerhoff &
L. E. Jarrard. 1984. Biochemical indices of reactivity and habituation in rats with hippocampal lesions.
Pharmacol Biochem Behav.
20: 793–797.
- 45
Lowry, C. A.
2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis.
J. Neuroendocrinol. 14: 911–923.
- 46
Valentino, R. J. &
E. J. Van Bockstaele. 2005. Functional interactions between stress neuromediators and the locus coeruleus–noradrenaline system. In
Handbook of Stress and the Brain. 465–486. Elsevier.
The Netherlands
.
- 47
Curtis, A. L.
et al.
1997. Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity.
J. Pharmacol. Exp. Ther.
281: 163–172.
- 48
Jedema, H. P. &
A. A. Grace. 2004. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro.
J. Neurosci. 24: 9703–9713.
- 49
Loy, R.
et al.
1980. Noradrenergic innervation of the adult rat hippocampal formation.
J. Comp. Neurol.
189: 699–710.
- 50
Lipski, W. J. &
A. A. Grace. 2008. Neurons in the Ventral Subiculum Are Activated by Noxious Stimuli and Are Modulated by Noradrenergic Afferents. Program No 1951, 2008 Neuroscience Meeting Planner
Washington
,
DC
. Society for Neuroscience.
- 51
Duncan, G. E.
et al.
1991. Beta-adrenergic receptor distribution in human and rat hippocampal formation: marked species differences.
Brain Res.
561: 84–92.
- 52
Jurgens, C. W.
et al.
2005. Beta1 adrenergic receptor-mediated enhancement of hippocampal CA3 network activity.
J. Pharmacol. Exp. Ther.
314: 552–560.
- 53
Raman, I. M.,
G. Tong &
C. E. Jahr. 1996. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase.
Neuron
16: 415–421.
- 54
Snyder, S. H.
1970. Putative neurotransmitters in the brain: selective neuronal uptake, subcellular localization, and interactions with centrally acting drugs.
Biol. Psychiatr. 2: 367–389.
- 55
Valenti, O. &
A. A. Grace. 2008. Acute and Repeated Stress Induce a Pronounced and Sustained Activation of VTA DA Neuron Population Activity. Program no 47911, Neuroscience Meeting Planner
Washington
,
DC.
Society for Neuroscience.
- 56
Pacchioni, A. M.
et al.
2002. A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors.
Ann. N. Y. Acad. Sci.
965: 233–246.
- 57
Aston-Jones, G.,
J. Rajkowski &
J. Cohen. 1999. Role of locus coeruleus in attention and behavioral flexibility.
Biol. Psychiatry.
46: 1309–1320.
- 58
Aston-Jones, G. &
J. D. Cohen. 2005. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance.
Annu. Rev. Neurosci.
28: 403–450.
- 59
Smagin, G. N.,
A. H. Swiergiel &
A. J. Dunn. 1995. Corticotropin-releasing factor administered into the locus coeruleus, but not the parabrachial nucleus, stimulates norepinephrine release in the prefrontal cortex.
Brain Res Bull. 36: 71–76.
- 60
Valentino, R. J.,
S. L. Foote &
M. E. Page. 1993. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses.
Ann. N. Y. Acad. Sci.
697: 173–188.
- 61
Abercrombie, E. D.,
R. W. Keller, Jr. &
M. J. Zigmond. 1988. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies.
Neuroscience. 27: 897–904.
- 62
Korf, J.,
G. K. Aghajanian &
R. H. Roth. 1973. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus.
Neuropharmacology
12: 933–398.
- 63
Weinshenker, D. &
J. P. Schroeder. 2007. There and back again: a tale of norepinephrine and drug addiction.
Neuropsychopharmacology
32: 1433–1451.
- 64
Koob, G. F.
1999. Corticotropin-releasing factor, norepinephrine, and stress.
Biol. Psychiatry.
46: 1167–1180.
- 65
Aston-Jones, G. &
G. C. Harris. 2004. Brain substrates for increased drug seeking during protracted withdrawal.
Neuropharmacology. 47 (Suppl 1): 167–179.
- 66
Erb, S.
et al.
2000. Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking.
Neuropsychopharmacology
23: 138–150.
- 67
Villegier, A. S.
et al.
2003. Stimulation of postsynaptic alpha1b- and alpha2-adrenergic receptors amplifies dopamine-mediated locomotor activity in both rats and mice.
Synapse
50: 277–284.
- 68
Roozendaal, B.,
B. S. McEwen &
S. Chattarji. 2009. Stress, memory and the amygdala.
Nat. Rev. Neurosci.
10: 423–433.
- 69
Rosen, J. B.
et al.
1998. Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning.
Brain Res.
796: 132–142.
- 70
Rosenkranz, J. A.,
D. M. Buffalari &
A. A. Grace.
2006. Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala.
Biol. Psychiatry.
59: 801–811.
- 71
Buffalari, D. M. &
A. A. Grace. 2009. Chronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons.
Int. J. Neuropsychopharmacol
12: 95–107.
- 72
Van Bockstaele, E. J.,
E. E. Colago &
R. J. Valentino. 1998. Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response.
J. Neuroendocrinol. 10: 743–757.
- 73
Buffalari, D. M. &
A. A. Grace. 2007. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation.
J. Neurosci.
27: 12358–12366.
- 74
See, R. E.
et al.
2003. Drug addiction, relapse, and the amygdala.
Ann. N. Y. Acad. Sci.
985: 294–307.
- 75
Ambroggi, F.
et al.
2008. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons.
Neuron. 59: 648–661.
- 76
Jedema, H. P. &
A. A. Grace. 2003. Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro.
Neuropsychopharmacology. 28: 63–72.