Molecular genetics of hypothalamic–pituitary–adrenal axis activity and function
Pierre Mormede
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorAline Foury
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorPascal Barat
Université de Bordeaux, PsyNuGen, Bordeaux, France.
Department of Pediatrics, CHU Bordeaux, Bordeaux, France.
Search for more papers by this authorJean-Benoit Corcuff
Université de Bordeaux, PsyNuGen, Bordeaux, France.
Department of Nuclear Medicine, CHU Bordeaux, Pessac, France
Search for more papers by this authorElena Terenina
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorNathalie Marissal-Arvy
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorMarie-Pierre Moisan
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorPierre Mormede
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorAline Foury
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorPascal Barat
Université de Bordeaux, PsyNuGen, Bordeaux, France.
Department of Pediatrics, CHU Bordeaux, Bordeaux, France.
Search for more papers by this authorJean-Benoit Corcuff
Université de Bordeaux, PsyNuGen, Bordeaux, France.
Department of Nuclear Medicine, CHU Bordeaux, Pessac, France
Search for more papers by this authorElena Terenina
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorNathalie Marissal-Arvy
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorMarie-Pierre Moisan
Université de Bordeaux, PsyNuGen, Bordeaux, France.
INRA UMR1286, Bordeaux, France.
Search for more papers by this authorAbstract
The hypothalamic–pituitary–adrenocortical (HPA) axis is a major neuroendocrine system involved in the regulation of numerous physiological processes and in adaptation to stress. A wide range of variability can be observed in all the components of the system, and the contribution of genetic factors has been shown in the central regulation of the axis, the production of glucocorticoid hormones by the adrenal cortex, their bioavailability, and the efficiency of their action at the level of receptor and postreceptor mechanisms. Numerous molecular polymorphisms have been described that contribute to physiological variation as well as to HPA axis-related pathological conditions. Although most studies focus on single gene polymorphisms, future studies should aim to integrate the different sources of variation into a systems genetic model to take into account the strong interdependence of the different components of the axis.
References
- 1 Ulrich-Lai, Y.M. & J.P. Herman. 2009. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10: 397–409.
- 2 Chrousos, G.P. 2009. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5: 374–381.
- 3 Kapoor, A. et al . 2006. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J. Physiol.-Lond. 572: 31–44.
- 4 Matthews, S.G. & D.I.W. Phillips. 2010. Minireview: transgenerational inheritance of the stress response: a new frontier in stress research. Endocrinology 151: 7–13.
- 5 Korte, S.M. et al . 2005. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29: 3–38.
- 6 DeRijk, R.H. 2009. Single nucleotide polymorphisms related to HPA axis reactivity. Neuroimmunomodulation 16: 340–352.
- 7 Mormede, P. et al . 2002. Molecular genetic approaches to investigate individual variations in behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 27: 563–583.
- 8 Wust, S. et al . 2004. A psychobiological perspective on genetic determinants of hypothalamus-pituitary-adrenal axis activity. Ann. N.Y. Acad. Sci. 1032: 52–62.
- 9 Windle, R.J. et al . 1998. The pulsatile characteristics of hypothalamo-pituitary-adrenal activity in female Lewis and Fisher 344 rats and its relationship to differential stress responses. Endocrinology 139: 4044–4052.
- 10 Stavreva, D.A. et al . 2009. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11: 1093–1102.
- 11 Franz, C.E. et al . 2010. Genetic and environmental influences on cortisol regulation across days and contexts in middle-aged men. Behav. Genet. 40: 467–479.
- 12 Harizi, H. et al . 2007. Marked genetic differences in the regulation of blood glucose under immune and restraint stress in mice reveals a wide range of corticosensitivity. J. Neuroimmunol. 189: 59–68.
- 13 Mormede, P. et al . 2010. Breeding for robustness: the role of cortisol. Animal. FirstView article. doi: 10.1017/S1751731110002168.
- 14 Touma, C. et al . 2008. Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 33: 839–862.
- 15 Engeland, W.C. & M.M. Arnhold. 2005. Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine 28: 325–331.
- 16 Bornstein, S.R. et al . 2008. Dissociation of ACTH and glucocorticoids. Trends Endocrinol. Metab. 19: 175–180.
- 17 Hennessy, D.P. et al . 1988. Consistent capacity for adrenocortical response to ACTH administration in pigs. Am. J. Vet. Res. 49: 1276–1283.
- 18 Zhang, S.H., D.P. Hennessy & P.D. Cranwell. 1990. Pituitary and adrenocortical responses to corticotropin-releasing factor in pigs. Am. J. Vet. Res. 51: 1021–1025.
- 19 Zhang, S.H. et al . 1992. Physiological responses to exercise and hypoglycemia stress in pig of differing adrenal responsiveness. Comp. Biochem. Physiol. A-Physiol. 103: 695–703.
- 20 Zhang, S.H. et al . 1993. Adrenocortical ACTH receptors in pigs of differing in vivo response to adrenocorticotropin. Comp. Biochem. Physiol. A-Physiol. 104: 43–49.
- 21 Bertagna, X. et al . 1994. The combined corticotropin-releasing hormone/lysine vasopressin test discloses a corticotroph phenotype. J. Clin. Endocrinol. Metab. 79: 390–394.
- 22 Coste, J. et al . 1994. Reliability of hormonal levels for assessing the hypothalamic-pituitary-adrenocortical system in clinical pharmacology. Br. J. Pharmacol. 38: 474–479.
- 23 Larzul, C. et al . 2010. Genetic parameters for ACTH response in pig. German Society for Animal Science, 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany. August 1-6. com0169.
- 24 Brown, K.I. & K.E. Nestor. 1973. Some physiological responses of turkeys selected for high and low adrenal responses to cold stress. Poult. Sci. 52: 1948–1954.
- 25 Hazard, D. et al . 2008. Gene array and real time PCR analysis of the adrenal sensitivity to adrenocorticotropic hormone in pig. BMC Genomics 9: 101.
- 26 Li, L.A. et al . 2008. Characterization of adrenal ACTH signaling pathway and steroidogenic enzymes in Erhualian and Pietrain pigs with different plasma cortisol levels. Steroids 73: 806–814.
- 27 Li, L.A. et al . 2008. Diminished expression of ACTH signaling proteins and steroidogenic limiting factors in adrenocortical cells isolated from halothane(nn) pigs. Domest. Anim. Endocrinol. 35: 1–7.
- 28 Jouffe, V. et al . 2009. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs. BMC Proc. 3(S4): S14.
- 29 Bureau, C. et al . 2009. Gene array analysis of adrenal glands in broiler chickens following ACTH treatment. BMC Genomics. 10: 430.
- 30 Moisan, M.P. 2010. Genotype-phenotype associations in understanding the role of corticosteroid-binding globulin in health and disease animal models. Mol. Cell. Endocrinol. 316: 35–41.
- 31 Gagliardi, L., J.T. Ho & D.J. Torpy. 2010. Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol. Cell. Endocrinol. 316: 24–34.
- 32 Petersen, H.H. et al . 2006. Hyporesponsiveness to glucocorticoids in mice genetically deficient for the corticosteroid binding globulin. Mol. Cell. Biol. 26: 7236–7245.
- 33 Richard, E.M. et al . 2010. Plasma transcortin influences endocrine and behavioral stress responses in mice. Endocrinology 151: 649–659.
- 34 Holliday, K.L. et al . 2010. Genetic variation in neuroendocrine genes associates with somatic symptoms in the general population: results from the EPIFUND study. J. Psychosom. Res. 68: 469–474.
- 35 Holmes, M.C. & J.R. Seckl. 2006. The role of 11 beta-hydroxysteroid dehydrogenases in the brain. Mol. Cell. Endocrinol. 248: 9–14.
- 36 Seckl, J.R. 2004. 11 beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr. Opin. Pharmacol. 4: 597–602.
- 37 Chapman, K.E. & J.R. Seckl. 2008. 11 beta-HSD1, inflammation, metabolic disease and age-related cognitive (dys)function. Neurochem. Res. 33: 624–636.
- 38 Hwang, J.Y. et al . 2009. HSD11B1 polymorphisms predicted bone mineral density and fracture risk in postmenopausal women without a clinically apparent hypercortisolemia. Bone 45: 1098–1103.
- 39 Gross, K.L., N.Z. Lu & J.A. Cidlowski. 2009. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol. Cell. Endocrinol. 300: 7–16.
- 40 Nicolaides, N.C. et al . 2010. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75: 1–12.
- 41 Niu, N.F. et al . 2009. Human glucocorticoid receptor alpha gene (NR3C1) pharmacogenomics: gene resequencing and functional genomics. J. Clin. Endocrinol. Metab. 94: 3072–3084.
- 42 Lamberts, S.W. et al . 1996. Clinical aspects of glucocorticoid sensitivity. Steroids 61: 157–160.
- 43 Huizenga, N.A. et al . 1998. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamo-pituitary-adrenal axis to a low dose of dexamethasone in elderly individuals. J. Clin. Endocrinol. Metab. 83: 47–54.
- 44 Hearing, S.D. et al . 1999. Wide variation in lymphocyte steroid sensitivity among healthy human volunteers. J. Clin. Endocrinol. Metab. 84: 4149–4154.
- 45 Ebrecht, M. et al . 2000. Tissue specificity of glucocorticoid sensitivity in healthy adults. J. Clin. Endocrinol. Metab. 85: 3733–3739.
- 46 Van Den Akker, E.L. et al . 2006. Glucocorticoid receptor polymorphism affects transrepression but not transactivation. J. Clin. Endocrinol. Metab. 91: 2800–2803.
- 47 Shen, H.Y. et al . 2009. Differential alteration of heat shock protein 90 in mice modifies glucocorticoid receptor function and susceptibility to trauma. J. Neurotrauma. 27: 373–381.
- 48 Pae, C.U. et al . 2009. TAAR 6 and HSP-70 variations associated with bipolar disorder. Neurosci. Lett. 465: 257–261.
- 49 Binder, E.B. 2009. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl. 1): S186–S195.
- 50 Binder, E.B. et al . 2009. HPA-axis regulation at in-patient admission is associated with antidepressant therapy outcome in male but not in female depressed patients. Psychoneuroendocrinology 34: 99–109.
- 51 Kunzel, H.E. et al . 2003. Pharmacological and nonpharmacological factors influencing hypothalamic-pituitary-adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex-CRH test. Neuropsychopharmacology 28: 2169–2178.
- 52 Baghai, T.C. et al . 2002. Hypothalamic-pituitary-adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci. Lett. 328: 299–303.
- 53 van Rossum, E.F.C. et al . 2006. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry 59: 681–688.
- 54 Chrousos, G.P. & T. Kino. 2009. Glucocorticoid signaling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders. Ann. N.Y. Acad. Sci. 1179: 153–166.
- 55 Morton, N.M. 2010. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol. Cell. Endocrinol. 316: 154–164.
- 56 Devenport, L. et al . 1989. Corticosterone's dual metabolic actions. Life Sci. 45: 1389–1396.
- 57 Marissal-Arvy, N. et al . 2010. Functional variability in corticosteroid receptors is a major component of strain differences in fat deposition and metabolic consequences of enriched diets in rat. Metabolism. In press doi:10.1016/j.metabol.2010.07.005.http://dx.doi.org/10.1016/j.metabol.2010.07.005.
- 58 Taylor, A.I. et al . 2009. Effect of RU486 on hepatic and adipocyte gene expression improves diabetes control in obesity-type 2 diabetes. Horm. Metab. Res. 41: 899–904.
- 59 Marissal-Arvy, N., P. Mormede & A. Sarrieau. 1999. Strain differences in corticosteroid receptor efficiencies and regulation in Brown Norway and Fischer 344 rats. J. Neuroendocrinol. 11: 267–273.
- 60 Marissal-Arvy, N. et al . 2007. Strain differences in hypothalamic pituitary adrenocortical axis function and adipogenic effects of corticosterone in rats. J. Endocrinol. 195: 473–484.
- 61 Marissal-Arvy, N. et al . 2004. Gain of function mutation in the mineralocorticoid receptor of the Brown Norway rat. J. Biol. Chem. 279: 39232–39239.
- 62 Helies, J.M. et al . 2005. Comparison of fat storage between Fischer 344 and obesity-resistant Lou/C rats fed different diets. Obes. Res. 13: 3–10.
- 63 Shin, A.C. et al . 2010. Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int. J. Obes. (Lond.) 34: 1218–1226.
- 64 Michel, C., A. Dunn-Meynell & B.E. Levin. 2004. Reduced brain CRH and GR mRNA expression precedes obesity in juvenile rats bred for diet-induced obesity. Behav. Brain Res. 154: 511–517.
- 65 Morton, N.M. et al . 2005. A polygenic model of the metabolic syndrome with reduced circulating and intra-adipose glucocorticoid action. Diabetes 54: 3371–3378.
- 66 Solberg Woods, L.C. et al . 2009. Identification of genetic loci involved in diabetes using a rat model of depression. Mamm. Genome 20: 486–497.
- 67 Redei, E.E. 2008. Molecular genetics of the stress-responsive adrenocortical axis. Ann. Med. 40: 139–148.
- 68 Taylor, B.A., L.M. Tarantino & S.J. Phillips. 1999. Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm. Genome 10: 963–968.
- 69 Vogel, H. et al . 2009. Characterization of Nob3, a major quantitative trait locus for obesity and hyperglycemia on mouse chromosome 1. Physiol. Genomics 38: 226–232.
- 70 Xu, D. et al . 2006. A polymorphic glucocorticoid receptor in a mouse population may explain inherited altered stress response and increased anxiety-type behaviors. FASEB J. 20: 2414–2416.
- 71 Mormede, P., M.P. Moisan & W.E. Crusio. 2008. Does a polymorphic glucocorticoid receptor explain inherited altered stress response and increased anxiety-type behaviors in a mouse population?FASEB J. 22: 5–6; Author reply 6–8.
- 72 Tomita, M. et al . 2010. The effect of CAG repeat polymorphism in the glucocorticoid receptor on stress responses of mice exposed to water-immersion restraint stress. Int. J. Mol. Med. 25: 415–420.
- 73 Touma, C. et al . 2009. Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression. PLoS One 4: e4325.
- 74 Knapman, A. et al . 2010. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J. Psychiatr. Res. 44: 566–575.
- 75 Knapman, A. et al . 2010. Modeling psychotic and cognitive symptoms of affective disorders: disrupted latent inhibition and reversal learning deficits in highly stress reactive mice. Neurobiol. Learn. Mem. 94: 145–152.
- 76 Claes, S. 2009. Glucocorticoid receptor polymorphisms in major depression. Ann. N.Y. Acad. Sci. 1179: 216–228.
- 77 Spijker, A.T. & E.E.C. van Rossum. 2009. Glucocorticoid receptor polymorphisms in major depression focus on glucocorticoid sensitivity and neurocognitive functioning. Ann. N.Y. Acad. Sci. 1179: 199–215.
- 78 Gillespie, C.F. et al . 2009. Risk and resilience: genetic and environmental influences on development of the stress response. Depress. Anxiety 26: 984–992.
- 79 Binder, E.B. & C.B. Nemeroff. 2010. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol. Psychiatry 15: 574–588.
- 80 Ukkola, O. et al . 2001. Glucocorticoid receptor Bcl I variant is associated with an increased atherogenic profile in response to long-term overfeeding. Atherosclerosis 157: 221–224.
- 81 van Rossum, E.F.C. et al . 2002. A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes 51: 3128–3134.
- 82 Voorhoeve, P.G. et al . 2009. Glucocorticoid receptor gene variant is associated with increased body fatness in youngsters. Clin. Endocrinol. 71: 518–523.
- 83 Fernandes-Rosa, F.L. et al . 2010. Mineralocorticoid receptor p.I180V polymorphism: association with body mass index and LDL-cholesterol levels. J. Endocrinol. Invest. 33: 472–477.
- 84 Barat, P. et al . 2005. Corticosteroid binding globulin gene polymorphism influences cortisol driven fat distribution in obese women. Obes. Res. 13: 1485–1490.
- 85 Draper, N. et al . 2002. Association studies between microsatellite markers within the gene encoding human 11beta-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J. Clin. Endocrinol. Metab. 87: 4984–4990.
- 86 Asensio, C., P. Muzzin & F. Rohner-Jeanrenaud. 2004. Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. Int. J. Obes. Relat. Metab. Disord. 28(Suppl. 4): S45–S52.
- 87 Rautanen, A. et al . 2006. Associations of body size at birth with late-life cortisol concentrations and glucose tolerance are modified by haplotypes of the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 91: 4544–4551.
- 88 Finken, M.J.J. et al . 2007. The 23K variant of the R23K polymorphism in the glucocorticoid receptor gene protects against postnatal growth failure and insulin resistance after preterm birth. J. Clin. Endocrinol. Metab. 92: 4777–4782.
- 89 Szczepankiewicz, A. et al . 2008. No association of glucocorticoid receptor polymorphisms with asthma and response to glucocorticoids. Adv. Med. Sci. 53: 245–250.
- 90 van Winsen, L.M. et al . 2009. A glucocorticoid receptor gene haplotype (TthIII1/ER22/23EK/9beta) is associated with a more aggressive disease course in multiple sclerosis. J. Clin. Endocrinol. Metab. 94: 2110–2114.
- 91 Hawkins, G.A. et al . 2009. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J. Allergy Clin. Immunol. 123: 1376–1383.
- 92 Spagnolo, P. et al . 2007. Association between heat shock protein 70/Hom genetic polymorphisms and uveitis in patients with sarcoidosis. Invest. Ophthalmol. Vis. Sci. 48: 3019–3025.
- 93 Raby, B.A. et al . 2009. Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma. Respir. Res. 10: 67.
- 94 Majnik, J. et al . 2006. Overrepresentation of the N363S variant of the glucocorticoid receptor gene in patients with bilateral adrenal incidentalomas. J. Clin. Endocrinol. Metab. 91: 2796–2799.
- 95 Labuda, M. et al . 2010. Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leuk. Res. 34: 492–497.
- 96 Hennessy, D.P. & P.N. Jackson. 1987. Relationship between adrenal responsiveness and growth rate. In Manipulating Pig Production , vol. I. APSA Committee, Ed.: 23. Australasian Pig Science Association. South Perth, Australia.
- 97 Knott, S.A. et al . 2008. Rams with poor feed efficiency are highly responsive to an exogenous adrenocorticotropin hormone (ACTH) challenge. Domestic Anim. Endocrinol. 34: 261–268.
- 98 Thaxton, J.P. & S. Puvadolpirod. 2000. Model of physiological stress in chickens 5. Quantitative evaluation. Poult. Sci. 79: 391–395.
- 99 Foury, A. et al . 2005. Stress hormones, carcass composition and meat quality in Large White × Duroc pigs. Meat. Sci. 69: 703–707.
- 100 Foury, A. et al . 2007. Stress neuroendocrine profiles in five pig breeding lines and the relationship with carcass composition. Animal 1: 973–982.
- 101 Knap, P.W. 2005. Breeding robust pigs. Aust. J. Exp. Agric. 45: 763–773.
- 102 Leenhouwers, J.I. et al . 2002. Fetal development in the pig in relation to genetic merit for piglet survival. J. Anim. Sci. 80: 1759–1770.
- 103 Salak-Johnson, J.L. & J.J. McGlone. 2007. Making sense of apparently conflicting data: stress and immunity in swine and cattle. J. Anim. Sci. 85: E81–E88.
- 104 Michel, V. et al . 2007. Decreased heat tolerance is associated with hypothalamo-pituitary-adrenocortical axis impairment. Neuroscience 147: 522–531.
- 105 Foury, A. et al . 2009. Estimation of genetic trends from 1977 to 2000 for stress-responsive systems in French Large White and Landrace pig populations using frozen semen. Animal 3: 1681–1687.