The history of the tetracyclines
Mark L. Nelson
Paratek Pharmaceuticals, Inc., Boston, Massachusetts.
Search for more papers by this authorStuart B. Levy
Paratek Pharmaceuticals, Inc., Boston, Massachusetts.
Tufts University School of Medicine, Boston, Massachusetts
Search for more papers by this authorMark L. Nelson
Paratek Pharmaceuticals, Inc., Boston, Massachusetts.
Search for more papers by this authorStuart B. Levy
Paratek Pharmaceuticals, Inc., Boston, Massachusetts.
Tufts University School of Medicine, Boston, Massachusetts
Search for more papers by this authorAbstract
The history of the tetracyclines involves the collective contributions of thousands of dedicated researchers, scientists, clinicians, and business executives over the course of more than 60 years. Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. The second-generation semisynthetic analogs and more recent third-generation compounds show the continued evolution of the tetracycline scaffold toward derivatives with increased potency as well as efficacy against tetracycline-resistant bacteria, with improved pharmacokinetic and chemical properties. Their biologic activity against a wide spectrum of microbial pathogens and their uses in mammalian models of inflammation, neurodegeneration, and other biological systems indicate that the tetracyclines will continue to be successful therapeutics in infectious diseases and as potential therapeutics against inflammation-based mammalian cell diseases.
References
- 1 From an interview conducted by author Mark Nelson in April, 2011 with Mr. Tobey Hockett, aged 68, now retired after a successful career as an attorney and Chief Assistant Public Defender in Sarasota, Florida .
- 2 Pearson, M. 1969. The Million Dollar Bugs . G.P. Putnam's Sons. New York .
- 3
Dubos, R.J. &
R.D. Hotchkiss. 1941. The production of bacteriocidal substances by aerobic sporulating bacilli.
J. Exp. Med.
78: 629–640.
10.1084/jem.73.5.629 Google Scholar
- 4 Waksman, S.A., A. Schatz & D.M. Reynolds. 1946. Production of antibiotic substances by actinomycetes. Ann. N.Y. Acad. Sci. 48: 73–85.
- 5 Duggar, B.M. 1948. Aureomycin: a product of the continuing search for new antibiotics. Ann. N.Y. Acad. Sci. 51: 177–181.
- 6 Finlay, A.C., G.L. Hobby, S.Y. Pan, et al . 1950. Terramycin, a new antibiotic. Science 111: 85.
- 7 King, E.Q., C.N. Lewis, H. Welch, et al . 1950. Clinical observations on the use of Terramycin hydrochloride. J. Am. Med. Assoc. 143: 1–4.
- 8 Stephens, C.R., L.H. Conover, F.A. Hochstein, et al . 1952. Terramycin. VIII. Structure of Aureomycin and Terramycin. J. Am. Chem. Soc. 74: 4976–4977.
- 9 Stephens, C.R., L.H. Conover, R. Pasternak, et al. 1954. The structure of Aureomycin. J. Am. Chem. Soc. 76: 3568–3575.
- 10 Conover, L.H., W.T. Moreland, A.R. English, et al . 1953. Terramycin. XI. Tetracycline. J. Am. Chem. Soc. 75: 5455.
- 11 Blackwood, R.K., J.J. Beereboom, H.H. Rennhard, et al . 1961. 6-Methylenetetracyclines. I. A new class of antibiotics. J. Am. Chem. Soc. 83: 2773–2774.
- 12 Stephens, C.R., J.J. Beereboom, H.H. Rennhard, et al . 1963. 6-Deoxytetracyclines. IV. Preparation, C-6 stereochemistry, and reactions. J. Am. Chem. Soc. 85: 2643–2652.
- 13 Dahl, E.L. & P.J. Rosenthal. 2007. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob. Agents Chemother. 51: 3485–3490.
- 14 Hoerauf, A., S. Mand, O. Adjei, et al . 2001. Depletion of wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 357: 1415–1416.
- 15 McCormick, J.R.D., N.O. Sjolander, U. Hirsch, et al . 1957. A new family of antibiotics: the demethyltetracyclines. J. Am. Chem. Soc. 79: 4561–4563.
- 16 Church, R.F., R.E. Schaub & M.J. Weiss. 1971. Synthesis of 7-dimethylamino- 6-demethyl-6-deoxytetracycline (Minocycline) via 9-nitro-6-demethyl-6- deoxytetracycline. J. Org. Chem. 36: 723–725.
- 17 Doershuk, A.P., B.A. Bitler & J.R.D. McCormick. 1955. Reversible isomerization in the tetracycline family. J. Am. Chem. Soc. 77: 4687.
- 18 Roberts, M.C. 2003. Tetracycline therapy: Update. Clin. Infect. Dis. 36: 462–467.
- 19 Nelson, M.L. & M.Y. Ismail. 2007. The antibiotic and nonantibiotic tetracyclines. In Comprehensive Medicinal Chemistry , Vol . 7. D. Triggle & J. Taylor, Eds.: 742–775. Elsevier Science Press. Ltd., New York .
- 20 Rogalski, W. 1985. The tetracyclines, 1985. In The Handbook of Experimental Pharmacology. 1985. Vol . 78. R.K. Blackwood, J.J. Hlavka, J.H. Boothe, Eds.: 117–198. Springer-Verlag, Berlin. New York .
- 21 Bryskier, A. 2005. Structure-activity relationships in antibacterial agents. In Antimicrobial Agents: Antibacterials and Antifungals. Tetracyclines. A. Bryskier, Ed.: 1371–1377. ASM Press. Washington , DC .
- 22 Weinstein, L. 2005. Antimicrobial agents: protein synthesis inhibitors and miscellaneous antibacterial agents. In Goodman and Gilman's: The Pharmacological Basis of Therapeutic Agents , 11th Ed . L.L. Brunton, J.S. Lazo, & K.L. Parker, Eds.: 562–590. McGraw-Hill Companies. New York .
- 23 Gale, E.F. & J.P. Folkes. 1953. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53: 493–498.
- 24 Connamacher, R.H. & H.G. Mandel. 1965. Binding of tetracycline to the 30S ribosomes and to polyuridylic acid. Biochem. Biophys. Res. Comm. 20: 98–103.
- 25 Strel’tsov, S.A., M.K. Kukhanova, G.V. Gurskii, et al . 1975. Oxytetracycline binding to E. coli ribosomes. Mol. Biol. 9: 910–921.
- 26 Day, L.E. 1966. Tetracycline inhibition in cell-free protein synthesis. I. Binding of tetracyclines to components of the system. J. Bact. 91: 1917–1923.
- 27 Goldman, R.A., T. Hasan, C.C. Hall, et al . 1983. Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis. Biochemistry 22: 359–368.
- 28 Epe, B. & P. Woolley. 1984. The binding of 6-demethylchlortetracycline to 70S, 50S, and 30S ribosomal particles: a quantitative study by fluorescence anisotropy. EMBO J. 3: 121–126.
- 29 Tritton, T.R. 1977. Ribosome-tetracycline interactions. Biochemistry 16: 4133–4138.
- 30 Gottesman, M.E. 1967. Reaction of the ribosome-bound peptidyltransfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J. Biol. Chem. 242: 5564–5571.
- 31 Craven, G.R., R. Gavin & T. Fanning. 1969. The transfer RNA binding site on the 30S ribosome and the site of tetracycline inhibition. Cold Spring Harbor Symp. Quant. Biol. 34: 129–134.
- 32 Suarez, G. & D. Nathans. 1965. Inhibition of aminoacyl tRNA binding to ribosomes by tetracycline. Biochem. Biophys. Res. Comm. 18: 743–750.
- 33 Smythies, J.R., F. Bennington & R.D. Morin. 1972. On the molecular mechanism of action of the tetracyclines. Experentia 28: 1253–1254.
- 34 Moazed, D. & H.F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389–394.
- 35 Brodersen, D.E., W.M. Clemons, Jr., A.P. Carter, et al . 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143–1154.
- 36 Chopra, I. & S.J. Eccles. 1977. Diffusion of tetracycline across the outer membrane of Eschericia coli K-12: involvement of protein Ia. Biochem. Biophys. Res. Comm. 83: 550–557.
- 37 Oliva, B., G. Gordon, P. McNicholas, et al . 1992. Evidence that tetracycline analogs whose primary target is not the bacterial ribosome cause lysis of Eschericia coli. Antimicrob. Agents Chemother. 36: 913–919.
- 38 Hughes, L.J., J.J. Stezowski & R.E. Hughes. 1979. Chemical-structural properties of the tetracycline derivatives. 7. Direct evidence for the coexistence of the zwitterionic and non-ionized forms of the free base in solution. J. Am. Chem. Soc. 101: 7655–7657.
- 39 Othersen, O.G., A.C. Beierlein, H. Lanig & T. Clark. 2003. Conformations and tautomers of tetracycline. J. Phys. Chem. B 107: 13743–13749.
- 40 Schmitt, M.O., S. Schneider & M.L. Nelson. 2007. Novel-Insight into the protonation-deprotonation equilibria of tetracycline and several derivatives in aqueous solution II. Analysis of the pH-dependent fluorescence spectra by the SVD technique. Zeits. Phys. Chem. 221: 235–271.
- 41 Demerec, C.M. 1949. Patterns of bacterial resistance to penicillin, aureomycin, and streptomycin. J. Clin. Invest. 28: 891–893.
- 42 Agata, A. & R. Monaco. 1954. Crossed resistance to tetracycline of various chloramphenicol-resistant Shigella strains and of various terramycin-resistant Salmonella typhosa strains. Boll. Della Soc. Ital. Biol. Sper. 30: 713–715.
- 43 Levy, S.B. & L. McMurry. 1974. Detection of an inducible membrane protein associated with R-factor mediated tetracycline resistance. Biochem. Biophys. Res. Comm. 56: 1060–1068.
- 44 McMurry, L., R. Petrucci & S.B. Levy. 1980. Active efflux of tetracycline encoded by four genetically different resistant determinants in E. coli. Proc. Natl. Acad. Sci. USA 77: 3974–3977.
- 45 Nikaido, H. 2009. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78: 119–146.
- 46 Burdett, V. 1986. Streptococcal tetracycline resistance mediated at the level of protein synthesis. J. Bact. 165: 564–569.
- 47 Nikolich, M.P., N.B. Shoemaker & A.A. Salyers. 1992. A Bacteroides tetracycline resistance gene represents a new class of ribosomal protection tetracycline resistance. Antimicrob. Agents Chemother. 36: 1005–1012.
- 48 Taylor, D.E. & A. Chau. 1996. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 40: 1–5.
- 49 M.C. Roberts. 2005. Tetracycline resistance due to ribosomal protection proteins. In Frontiers in Antimicrobial Resistance, A Tribute to Stuart B. Levy . D.G. White, M.N. Alekshun, P.F. McDermott, Eds.: 19–28. ASM Press. Washington , DC .
- 50 Yang, W. & I.F. Moore, K.P. Koteva, et al . 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279: 52346–52352.
- 51 Levy, S.B., L.M. McMurry, et al . 1999. Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 43: 1523–1524.
- 52 Hillen, W., G. Klock, I. Kaffenberger, et al . 1982. Purification of the TET repressor and TET operator from the transposons Tn10 and characterization of their interaction. J. Biol. Chem. 252: 6605–6013.
- 53 Orth, P., F. Cordes, D. Schnappinger, et al . 1998. Conformational changes of the Tet repressor induced by tetracycline trapping. J. Mol. Biol. 279: 439–447.
- 54 Okusu, H., D. MA & H. Nikaido. 1996. ActAB efflux pump plays a major role in the antibiotic resistance phenotype of Eschericia coli multiple-antibiotic reistance (Mar) mutants. Mol. Microbiol. 6: 1323–1333.
- 55 Nikaido, H. 2005. Role, structure, and function of multidrug efflux pumps in Gram-negative bacteria. In Frontiers in Antimicrobial Resistance , A Tribute to Stuart B. Levy. D.G. White, M.N. Alekshun, P.F. McDermott, Eds: 261–274. ASM Press. Washington , DC .
- 56
Poole, K.
2005. Pseudomonas aeruginosa . In
Frontiers in Antimicrobial Resistance ,
A Tribute to Stuart B. Levy
. D.G. White,
M.N. Alekshun,
P.F. McDermott, Eds.: 355–366.
ASM Press.
Washington
,
DC
.
10.1128/9781555817572.ch26 Google Scholar
- 57 Bassett, E.J., M.S. Keith, G. Armelagos, et al . 1980. Tetracycline-labeled human bone from ancient Sudanese Nubia (A. D. 350). Science 209: 1532–1534.
- 58 Frost, H.M., A. Villanueva, H. Roth & S. Stanislavecic. 1961. Experimental multiband tetracycline measurements of lamellar osteosblastic activity. Henry Ford Hosp. Med. Bull. 9: 312–319.
- 59 Keith, M. & G.J. Armelagos. 1983. Naturally occurring dietary antibiotics and human health. In The Anthropology of Medicine , 1st Ed. L. Romannuci-Ross, D. Moerman & R.R. Tancredi, Eds.: 63–74 Preager Press. New York .
- 60 Nelson, M.L., A. Dinardo, J. Hochberg & G. Armelagos. 2010. Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia, 350–550 CE. Am. J. Phys. Anthropol. 143: 151–154.
- 61 Cook, M., E.L. Molto & C. Andersen. 1989. Fluorochrome labeling in Roman period skeletons from Dakleh Oaisis, Egypt. Am. J. Phys. Anthropol. 80: 137–143.
- 62 Sum, P.E., V.J. Lee, R.T. Testa, et al . 1994. Glycylcyclines. I. A new generation of potent antibacterial agents through modification of the 9-aminotetracyclines. J. Med. Chem. 37: 184–188.
- 63 Sum, P.E. & P. Petersen. 1999. Synthesis and structure-activity relationship of novel glycylcycline derivatives leading to the discovery of GAR-936. Bioorg. Med. Chem. Lett. 9: 1459–1462.
- 64 Dowzicky, M.J. & E. Chmelarova. 2011. Global in vitro activity of tigecycline and linezolid against Gram positive organisms collected between 2004–2009. Int. J. Antimicrob. Agents 37: 562–566.
- 65 Sader, H.S., J.D. Farrell & R.N. Jones. 2011. Tigecycline activity tested against multidrug resistant Enterobacteriaceae and Acinetobacter spp. isolated in US medical centers (2005–2009). Diagn. Microb. Infect. Dis. 69: 223–227.
- 66 Townsend, M.L., M.W. Pound & R.H. Drew. 2011. Potential role of tigecycline in the treatment of community-acquired bacterial pneumonia. Infect. Drug Res. 4: 77–86.
- 67 Jump, R.L., Y. Li, M.J. Pultz, et al . 2011. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob. Agents Chemother. 55: 546–549.
- 68 Nelson, M.L, B.H. Park & S.B. Levy. 1994. Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J. Med. Chem. 37: 1355–1361.
- 69 Nelson, M.L. & S.B. Levy. 1999. Reversal of tetracycline resistance mediated by different tetracycline efflux determinants by an inhibitor of the Tet(B) antiport protein. Antimicro. Agents Chemother. 43: 1719–1724.
- 70 Nelson, M.L., M.Y. Ismail, L. McIntyre, et al . 2003. Versatile and facile synthesis of diverse semi-synthetic tetracycline derivatives via Pd-catalyzed reactions. J. Org. Chem . 68: 5838–5851.
- 71 Bhatia, B., T. Bowser, J. Chen, et al . 2003. PTK 0796 (BAY 73–6944) and other novel tetracycline derivatives exhibiting potent in vitro and in vivo activities against antibiotic resistant Gram-positive bacteria, abstr. 2420. 43rd Intersci. Conf. on Antimicrob. Agents and Chemother, September 13–17. Chicago , IL .
- 72 Arbeit, R.D., J.A. Roberts, A.R. Forsythe, et al . 2010. Safety and efficacy of PTK 0796: results of the phase 2 study in complicated skin and skin structure infections following IV and oral step-down therapy, abstr. 2420. 48th Intersci. Conf. on Antimicrob. Agents and Chemother, September 12–15. Washington , DC .
- 73 Hastings, M.L., J. Berniac, Y.H. Liu, et al . 2009. Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci. Trans. Med. 5: 1–7.
- 74 Charrest, M.G., C.D. Lerner, J.D. Brubaker, et al . 2005. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308: 395–398.
- 75 Korst, J.J., J.D. Johnston, K. Butler, et al . 1968. The total synthesis of dl-6-demethyl-6-deoxytetracycline. J. Am. Chem. Soc. 90: 439–457.
- 76
Martin, W.,
H. Hartung,
H. Urbach &
W. Drueckhimer. 1973. Synthesis in the tetracycline series. I. Total synthesis of dl-7-chloro-6-deoxytetracyclines and dl-7- chloro-6-demethyl-6deoxytetracyclines of the natural, the 5a-epi, and the 6-epi series.
Tet. Lett.
36: 3513–3516.
10.1016/S0040-4039(01)86958-6 Google Scholar
- 77 Kirchlechner, R. & W. Rogalski. 1980. Synthesis of 6-thiatetracycline, a highly active analog of the antibiotic tetracycline. Tet. Lett. 21: 247–250.
- 78 Clark, R., X. Xiao, D. Hunt, et al . 2010. Fluorocyclines: A new class of broad-spectrum tetracyclines with antibacterial properties, abstr. F1–2155. 51st Intersci. Conf. on Antimicrob. Agents and Chemother , September 17–20. Chicago, IL.
- 79 Gossen, M. & H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89: 5547–5551.
- 80 Bujard, H. 1998. The use of genetic switches for the generation of conditional mutants at the level of cells and animals. NATO ASI Series, Cell Biol. 105: 45–52.
- 81 Baron, U. & H. Bujard. 2000. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol. 327: 401–421.
- 82 Furth, P.A., L. St. Onge, H. Boger, et al . 1994. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91: 9302–9306.
- 83 Gossen, M. 2010. Tet technology and drug discovery. Eur. Biopharm. Rev. 38: 34–38.
- 84 Bertram, R. & W. Hillen. 2008. The application of the Tet repressor in prokaryotic gene regulation and expression. Microb. Biotech. 1: 2–16.
- 85 Zhu, P., M.I. Aller, U. Baron, et al . 2007. Silencing and Un-silencing of tetracycline-controlled genes in neurons. PLoS One 2: 6–12.
- 86 Golub, L.M., H.M. Lee, G. Lehrer, et al . 1983. Minocycline reduces gingival collagenolytic activity during diabetes: preliminary observations and a proposed new mechanism of action. J. Periodont. Res. 18: 516–521.
- 87 Greenwald, R.A., L.M. Golub, B. Lavietes, et al . 1987. Minocycline inhibits rheumatoid synovial collagenase in vivo and in vitro. J. Rheumatol. 14: 28–32.
- 88 Hanemaaijer, R., T. Sorsa, Y. Kontrinen, et al . 1997. MMP-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. J. Biol. Chem. 272: 31504–31509.
- 89 Golub, L.M. & R.T. Evans, T.F. McNamara, et al . 1994. A non-antimicrobial tetracycline inhibits gingival matrix metalloproteinases and bone loss in Porphrymonas gingivitis-induced periodontitis in rats. Ann. N.Y. Acad. Sci. 732: 96–111.
- 90 Griffin, M., E. Fricovsky, G. Ceballos & F. Villareal. 2010. Tetracyclines: a pleiotropic family of compounds with promising therapeutic properties. Review of the literature. Am. J. Physiol. Cell Physiol. 299: C539–C548.
- 91 Higgins, P.J., M. Draper & M. Nelson. 2011. Antiinflammatory activity of tetracyclines: applications to human disease. Antiinflam. AntiAllerg. Agents Med. Chem. 10: 132–152.
- 92 Curci, J., D. Mao, D. Bohner, et al . 2000. Postoperative treatment with doxycycline reduces aortic wall expression and activation of MMPs in patients with abdominal aortic aneurysms. J. Vasc. Surg. 31: 325–242.
- 93 Leonard, C., A. Hall, L. Collier, et al . 2009. Inhibition of gelatinase activity reduces neural injury in an ex vivo model of hypoxia-ischemia. Neuroscience 160: 755–766.
- 94 Kim, T. & O. Hwang. 2009. Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox. Res. 56: 671–668.
- 95 Ryan, M., A. Usman, N. Ramamurthy, et al . 2001. Excessive MMP activity in diabetes: inhibition by tetracycline analogs with zinc reactivity. Curr. Med. Chem. 8: 305–316.
- 96 Tikka, T., B. Feibich, G. Goldsteins, et al . 2001. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxcity by inhibiting activation and proliferation of microglia. J. Neurosci. 21: 2580–2588.
- 97 Solomon, A., M. Rosenblatt, D. Li, et al . 2000. Doxycycline inhibition of IL-1 in corneal epithelium. Invest. Ophthamol. Vis. Sci. 41: 2544–2557.
- 98 Nessler, S., R. Dodel, A. Bittner, et al . 2002. Effect of minocycline in experimental autoimmune encephalomyelitis. Ann. Neurol. 52: 689–690.
- 99 Madan, M., B. Bishayi, M. Hoge, et al . 2007. Doxycycline affects diet and bacteria-associated atheriosclerosis in an ApoE heterozygote murine model: cytokine profiling implications. Atheriosclerosis 190: 62–72.
- 100 Tamargo, R., R. Bok & H. Brem. 1991. Angiogenesis inhibition by minocycline. Cancer Res. 51: 672–675.
- 101 Zabad, R., L. Metz, T. Todoruk, et al . 2007. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: A pilot study. Mult. Scler. 13: 517–526.
- 102 Langevitz, P., I. Bank, D. Zemer, et al . 1992. Treatment of resistant rheumatoid arthritis with minocycline: an open study. J. Rheumatol. 19: 1502–1504.
- 103 Hutchinson, M., B. Coats, S. Lewis, et al . 2008. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun. 22: 1178–1189.
- 104 Bilousova, T.V., L. Dansie. M. Ngo, et al . 2009. Minocycline promotes dendritic spine maturation and improves behavioral performance in the fragile X mouse. J. Med. Gen. 46: 94–102.