Caudal genes in blood development and leukemia
Claudia Lengerke
University of Tübingen Medical Center—Hematology & Oncology, Tübingen, Germany.
Search for more papers by this authorGeorge Q. Daley
Children's Hospital Boston and Dana Farber Cancer Institute—Stem Cell Transplantation Program, Boston, Massachusetts
Search for more papers by this authorClaudia Lengerke
University of Tübingen Medical Center—Hematology & Oncology, Tübingen, Germany.
Search for more papers by this authorGeorge Q. Daley
Children's Hospital Boston and Dana Farber Cancer Institute—Stem Cell Transplantation Program, Boston, Massachusetts
Search for more papers by this authorAbstract
Members of the caudal gene family (in mice and humans: Cdx1, Cdx2, and Cdx4) have been studied during early development as regulators of axial elongation and anteroposterior patterning. In the adult, Cdx1 and Cdx2, but not Cdx4, have been intensively explored for their function in intestinal tissue homeostasis and the pathogenesis of gastrointestinal cancers. Involvement in embryonic hematopoiesis was first demonstrated in zebrafish, where cdx genes render posterior lateral plate mesoderm competent to respond to genes specifying hematopoietic fate, and compound mutations in cdx genes thus result in a bloodless phenotype. Parallel studies performed in zebrafish embryos and murine embryonic stem cells (ESCs) delineate conserved pathways between fish and mammals, corroborating a BMP/Wnt-Cdx-Hox axis during blood development that can be employed to augment derivation of blood progenitors from pluripotent stem cells in vitro. The molecular regulation of Cdx genes appears complex, as more recent data suggest involvement of non-Hox–related mechanisms and the existence of auto- and cross-regulatory loops governed by morphogens. Here, we will review the role of Cdx genes during hematopoietic development by comparing effects in zebrafish and mice and discuss their participation in malignant blood diseases.
References
- 1 Young, T. & J. Deschamps. 2009. Hox, Cdx, and anteroposterior patterning in the mouse embryo. Curr. Top. Dev. Biol. 88: 235–255.
- 2 Davidson, A.J. et al . 2003. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425: 300–306.
- 3 Davidson, A.J. & L.I. Zon. 2006. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev. Biol. 292: 506–518.
- 4 Lengerke, C. et al . 2008. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2: 72–82.
- 5 Wingert, R.A. et al . 2007. The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet. 3: 1922–1938.
- 6 Lengerke, C. et al . 2011. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev. Biol. 354: 134–142.
- 7 Guo, R.J., E.R. Suh & J.P. Lynch. 2004. The role of Cdx proteins in intestinal development and cancer. Cancer Biol. Ther. 3: 593–601.
- 8 Gaunt, S.J., D. Drage & A. Cockley. 2003. Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech. Dev. 120: 573–586.
- 9 Gaunt, S.J., A. Cockley & D. Drage. 2004. Additional enhancer copies, with intact cdx binding sites, anteriorize Hoxa-7/lacZ expression in mouse embryos: evidence in keeping with an instructional cdx gradient. Int. J. Dev. Biol. 48: 613–622.
- 10 Gaunt, S.J., D. Drage & R.C. Trubshaw. 2005. cdx4/lacZ and cdx2/lacZ protein gradients formed by decay during gastrulation in the mouse. Int. J. Dev. Biol. 49: 901–908.
- 11 Iimura, T. & O. Pourquie. 2006. Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442: 568–571.
- 12 Carapuco, M. et al . 2005. Hox genes specify vertebral types in the presomitic mesoderm. Genes. Dev. 19: 2116–2121.
- 13 Subramanian, V., B.I. Meyer & P. Gruss. 1995. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83: 641–653.
- 14 Young, T. et al . 2009. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev. Cell 17: 516–526.
- 15 Strumpf, D. et al . 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132: 2093–2102.
- 16 van de Ven, C. et al . 2011. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138: 3451–3462.
- 17 Savory, J.G. et al . 2009. Cdx2 regulation of posterior development through non-Hox targets. Development 136: 4099–4110.
- 18 Chawengsaksophak, K. et al . 2004. Cdx2 is essential for axial elongation in mouse development. Proc. Natl. Acad. Sci. USA 101: 7641–7645.
- 19 Chawengsaksophak, K. et al . 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386: 84–87.
- 20 van Nes, J. et al . 2006. The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice. Development 133: 419–428.
- 21 Lengerke, C. & G.Q. Daley. 2005. Patterning definitive hematopoietic stem cells from embryonic stem cells. Exp. Hematol. 33: 971–979.
- 22 Wang, Y. et al . 2008. Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc. Natl. Acad. Sci. USA 105: 7756–7761.
- 23 Gering, M. et al . 1998. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17: 4029–4045.
- 24 Charite, J. et al . 1998. Transducing positional information to the Hox genes: critical interaction of cdx gene products with position-sensitive regulatory elements. Development 125: 4349–4358.
- 25 Hunter, C.P. et al . 1999. Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit wnt signaling. Development 126: 805–814.
- 26 Savory, J.G. et al . 2011. Cdx4 is a Cdx2 target gene. Mech. Dev. 128: 41–48.
- 27 Beland, M. et al . 2004. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol. Cell Biol. 24: 5028–5038.
- 28 Houle, M. et al . 2000. Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol. Cell Biol. 20: 6579–6586.
- 29 Houle, M., J.R. Sylvestre & D. Lohnes. 2003. Retinoic acid regulates a subset of Cdx1 function in vivo. Development 130: 6555–6567.
- 30 de Jong, J.L. et al . 2010. Interaction of retinoic acid and scl controls primitive blood development. Blood 116: 201–209.
- 31 Pilon, N. et al . 2007. Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134: 2315–2323.
- 32 Pilon, N. et al . 2006. Cdx4 is a direct target of the canonical Wnt pathway. Dev. Biol. 289: 55–63.
- 33 Hikasa, H. et al . 2010. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell 19: 521–532.
- 34 Ro, H. & I.B. Dawid. 2011. Modulation of Tcf3 repressor complex composition regulates cdx4 expression in zebrafish. EMBO J. 30: 2894–2907.
- 35 Keenan, I.D., R.M. Sharrard & H.V. Isaacs. 2006. FGF signal transduction and the regulation of Cdx gene expression. Dev. Biol. 299: 478–488.
- 36 Yue, R. et al . 2009. Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell 139: 535–546.
- 37 Kovacs, J.J. et al . 2009. Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev. Cell 17: 443–4458.
- 38 Chen, W. et al . 2001. beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc. Natl. Acad. Sci. USA 98: 14889–14894.
- 39 Hart, D.O. et al . 2007. Initiation of zebrafish haematopoiesis by the TATA-box-binding protein-related factor Trf3. Nature 450: 1082–1085.
- 40 David, R. et al . 2008. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 10: 338–345.
- 41 Paik, E.J. et al . 2010. A chemical genetic screen in zebrafish for pathways interacting with cdx4 in primitive hematopoiesis. Zebrafish 7: 61–68.
- 42 Murry, C.E. & G. Keller. 2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132: 661–680.
- 43 Lengerke, C. et al . 2009. Hematopoietic development from human induced pluripotent stem cells. Ann. N. Y. Acad. Sci. 1176: 219–227.
- 44 McKinney-Freeman, S.L. et al . 2008. Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood 111: 4944–4953.
- 45 Lengerke, C. et al . 2007. The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann. N. Y. Acad. Sci. 1106: 197–208.
- 46 Calon, A. et al . 2007. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut 56: 1688–1695.
- 47 Izraeli, S. 2004. Leukaemia–a developmental perspective. Br. J. Haematol. 126: 3–10.
- 48 Scholl, C. et al . 2007. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J. Clin. Invest. 117: 1037–1048.
- 49 Rawat, V.P. et al . 2004. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 101: 817–822.
- 50 Rice, K.L. & J.D. Licht. 2007. HOX deregulation in acute myeloid leukemia. J. Clin. Invest. 117: 865–868.
- 51 Frohling, S. et al . 2007. HOX gene regulation in acute myeloid leukemia: CDX marks the spot? Cell Cycle 6: 2241–2245.
- 52 Rawat, V.P. et al . 2008. Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. Blood 111: 309–319.
- 53 Chase, A. et al . 1999. Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 93: 1025–1031.
- 54 Riedt, T. et al . 2009. Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood 113: 4049–4051.
- 55 Thoene, S. et al . 2009. The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia. Leukemia 23: 649–655.
- 56 Starkova, J. et al . 2010. HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL. Pediatr Blood Cancer 55: 1072–1082.
- 57 Muntean, A.G. & J.L. Hess. 2012. The pathogenesis of mixed-lineage leukemia. Annu. Rev. Pathol. 7: 283–301.
- 58 Ernst, P. et al . 2004. An MLL-dependent Hox program drives hematopoietic progenitor expansion. Curr. Biol. 14: 2063–2069.
- 59 Heckman, C.A. et al . 2000. A-Myb up-regulates Bcl-2 through a Cdx binding site in t(14;18) lymphoma cells. J. Biol. Chem. 275: 6499–6508.
- 60 Heckman, C.A., M.A. Wheeler & L.M. Boxer. 2003. Regulation of Bcl-2 expression by C/EBP in t(14;18) lymphoma cells. Oncogene 22: 7891–7899.
- 61 Lin, K.Y. et al . 2011. miR-125b, a target of CDX2, regulates cell differentiation through repression of the core binding factor in hematopoietic malignancies. J. Biol. Chem. 286: 38253–38263.
- 62 Bansal, D. et al . 2006. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc. Natl. Acad. Sci. USA 103: 16924–16929.
- 63 Yan, J. et al . 2006. Cdx4 and menin co-regulate Hoxa9 expression in hematopoietic cells. PLoS One 1: e47.
- 64 Koo, S. et al . 2010. Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica 95: 1642–1650.
- 65 Bei, L. et al . 2011. HoxA10 activates CDX4 transcription and Cdx4 activates HOXA10 transcription in myeloid cells. J. Biol. Chem. 286: 19047–19064.