Toll-like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity?
Paola Cavalcante
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorClaudia Barzago
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorFulvio Baggi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorCarlo Antozzi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorLorenzo Maggi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorRenato Mantegazza
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorCorresponding Author
Pia Bernasconi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Address for correspondence: Dr. Pia Bernasconi, Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta,” Via Celoria 11, 20133 Milan, Italy. [email protected]Search for more papers by this authorPaola Cavalcante
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorClaudia Barzago
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorFulvio Baggi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorCarlo Antozzi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorLorenzo Maggi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorRenato Mantegazza
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Search for more papers by this authorCorresponding Author
Pia Bernasconi
Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
Address for correspondence: Dr. Pia Bernasconi, Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico “Carlo Besta,” Via Celoria 11, 20133 Milan, Italy. [email protected]Search for more papers by this authorAbstract
Pathogen infections and dysregulated Toll-like receptor (TLR)–mediated innate immune responses are suspected to play key roles in autoimmunity. Among TLRs, TLR7 and TLR9 have been implicated in several autoimmune conditions, mainly because of their ability to promote abnormal B cell activation and survival. Recently, we provided evidence of Epstein–Barr virus (EBV) persistence and reactivation in the thymus of myasthenia gravis (MG) patients, suggesting an involvement of EBV in the intrathymic pathogenesis of the disease. Considerable data highlight the existence of pathogenic crosstalk among EBV, TLR7, and TLR9: EBV elicits TLR7/9 signaling, which in turn can enhance B cell dysfunction and autoimmunity. In this article, after a brief summary of data demonstrating TLR activation in MG thymus, we provide an overview on the contribution of TLR7 and TLR9 to autoimmune diseases and discuss our recent findings indicating a pivotal role for these two receptors, along with EBV, in driving, perpetuating, and/or amplifying intrathymic B cell dysregulation and autoimmune responses in MG. Development of therapeutic approaches targeting TLR7 and TLR9 signaling could be a novel strategy for treating the chronic inflammatory autoimmune process in myasthenia gravis.
References
- 1Anaya, J.-M. 2012. Common mechanisms of autoimmune diseases (the autoimmune tautology). Autoimmun. Rev. 11: 781–784.
- 2Berrih-Aknin, S. 2014. Myasthenia gravis: paradox versus paradigm in autoimmunity. J. Autoimmun. 52: 1–28.
- 3O'Neill, L.A., D. Golenbock & A.G. Bowie. 2013. The history of Toll-like receptors—redefining innate immunity. Nat. Rev. Immunol. 13: 453–460.
- 4Kawasaki, T. & T. Kawai. 2014. Toll-like receptor signaling pathways. Front. Immunol. 5: 461.
- 5Hurst, J. & P. von Landenberg. 2008. Toll-like receptors and autoimmunity. Autoimmun. Rev. 7: 204–208.
- 6Münz, C., J.D. Lünemann, M.T. Getts, et al. 2009. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9: 246–258.
- 7Kawai, T. & S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11: 373–384.
- 8De Franco, A.L., D.C. Rookhuizen & B. Hou. 2012. Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol. Rev. 247: 64–72.
- 9Soni, C., E.B. Wong, P.P. Domeier, et al. 2014. B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J. Immunol. 193: 4400–4414.
- 10Duffy, L. & S.C. O'Reilly. 2016. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther. 5: 69–80.
- 11Wu, Y.W., W. Tang & J.P. Zuo. 2015. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol. Sin. 36: 1395–1407.
- 12Komatsuda, A., H. Wakui, K. Iwamoto, et al. 2008. Up-regulated expression of Toll-like receptor mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 152: 482–487.
- 13Santiago-Raber, M.L., L. Baudino & S. Izui. 2009. Emerging roles of TLR7 and TLR9 in murine SLE. J. Autoimmun. 33: 231–238.
- 14Pisitkun, P., J.A. Deane, M.J. Difilippantonio, et al. 2006. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 12: 1669–1672.
- 15Huang, Q-Q., R.M. Pope. 2009. The role of toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 11: 357–364.
- 16Gambuzza, M., N. Licata, E. Palella, et al. 2011. Targeting Toll-like receptors: emerging therapeutics for multiple sclerosis management. J. Neuroimmunol. 239: 1–12.
- 17Miranda-Hernandez, S. & A.G. Baxter. 2013. Role of toll-like receptors in multiple sclerosis. Am. J. Clin. Exp. Immunol. 2: 75–93.
- 18Wang, Y.Z., M. Yan, F.F. Tian, et al. 2013. Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36: 121–130.
- 19Bernasconi, P., M. Barberis, F. Baggi, et al. 2005. Increased toll-like receptor 4 expression in thymus of myasthenia gravis patients. Am. J. Pathol. 167: 129–139.
- 20Robinet, M., S. Maillard, A.M. Cron, et al. 2017. Review on Toll-Like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin. Rev. Allergy Immunol. 52: 133–147.
- 21Cufi, P., N. Dragin, J.M. Weiss, et al. 2013. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann. Neurol. 73: 281–293.
- 22Cordiglieri, C., R. Marolda, S. Franzi, et al. 2014. Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. J. Autoimmun. 52: 74–89.
- 23Cavalcante, P., B. Galbardi, S. Franzi, et al. 2016. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–Barr virus infection. Immunobiology 221: 516–527.
- 24Cavalcante, P., R. Le Panse, S. Berrih-Aknin, et al. 2011. The thymus in myasthenia gravis: site of “innate autoimmunity”? Muscle Nerve 44: 467–484.
- 25Hennessy, E.J., A.E. Parker & L.A. O'Neill. 2010. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9: 293–307.
- 26Marx, A., F. Pfister, B. Schalke, et al. 2013. The different role of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun. Rev. 12: 875–884.
- 27Mantegazza, R., F. Baggi, P. Bernasconi, et al. 2003. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in nonthymomatous myasthenia gravis patients: remission after 6 years of follow-up. J. Neurol. Sci. 212: 31–36.
- 28Wolfe, G.I., H.J. Kaminski, I.B. Aban Minisman, et al. 2016. Randomized trial of thymectomy in myasthenia gravis. N. Engl. J. Med. 375: 511–522.
- 29Poëa-Guyon, S., P. Christadoss, R. Le Panse, et al. 2005. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J. Immunol. 174: 5941–5949.
- 30Cizeron-Clairac, G., R. Le Panse, M. Frenkian-Cuvelier, et al. 2008. Thymus and myasthenia gravis: what can we learn from DNA microarrays? J. Neuroimmunol. 201: 57–63.
- 31Cavalcante, P., L. Maggi, L. Colleoni, et al. 2011. Inflammation and Epstein–Barr virus infection are common features of myasthenia gravis thymus: possible roles in pathogenesis. Autoimmune Dis. 2011: 213092.
- 32Weiss, J.M., P. Cufi, J. Bismuth, et al. 2013. SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218: 373–381.
- 33Karpala, A.J., T.J. Doran & A.G. Bean. 2005. Immune responses to dsRNA: implications for gene silencing technologies. Immunol. Cell Biol. 83: 211–216.
- 34Cavalcante, P., M. Barberis, M. Cannone, et al. 2010. Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology 74: 1118–1126.
- 35Cavalcante, P., B. Serafini, B. Rosicarelli, et al. 2010. Epstein–Barr virus persistence and reactivation in myasthenia gravis thymus. Ann. Neurol. 67: 726–738.
- 36Lossius, A., J.N. Johansen, Ø. Torkildsen, et al. 2012. Epstein–Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 4: 3701–3730.
- 37Jha, H.C., Y. Pei & E.S. Robertson. 2016. Epstein–Barr virus: diseases linked to infection and transformation. Front. Microbiol. 7: 1602.
- 38Serafini, B., B. Rosicarelli, D. Franciotta, et al. 2007. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204: 2899–2912.
- 39Lassmann, H., G. Niedobitek, F. Aloisi, et al. 2011. Epstein–Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134: 2772–2786.
- 40Croia, C., B. Serafini, M. Bombardieri, et al. 2013. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann. Rheum. Dis. 72: 1559–1568.
- 41Csuka, D., M. Banati, C. Rozsa, et al. 2012. High anti-EBNA-1 IgG levels are associated with early-onset myasthenia gravis. Eur. J. Neurol. 19: 842–846.
- 42Barzago, C., J. Lum, P. Cavalcante, et al. 2016. A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology 221: 1227–1236.
- 43Ning, S. 2011. Innate immune modulation in EBV infection. Herpesviridae 2: 1.
- 44Tierney, R.J., C.D. Shannon-Lowe, L. Fitzsimmons, et al. 2015. Unexpected patterns of Epstein–Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology 474: 117–130.
- 45Iwakiri, D., L. Zhou, M. Samanta, et al. 2009. Epstein–Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J. Exp. Med. 206: 2091–2099.
- 46Martin, H.J., J.M. Lee, D. Walls, et al. 2007. Manipulation of the toll-like receptor 7 signaling pathway by Epstein–Barr virus. J. Virol. 81: 9748–9758.
- 47Wang, H., M.W. Nicholas, K.L. Conway, et al. 2006. EBV latent membrane protein 2A induces autoreactive B cell activation and TLR hypersensitivity. J. Immunol. 177: 2793–2802.
- 48Fiola, S., D. Gosselin, K. Takada, et al. 2010. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J. Immunol. 185: 3620–3631.
- 49Iskra, S., M. Kalla, H.J Delecluse, et al. 2010. Toll-like receptor agonists synergistically increase proliferation and activation of B cells by Epstein–Barr virus. J. Virol. 84: 3612–3623.
- 50Quan, T.E., R.M. Roman, B.J. Rudenga, et al. 2010. Epstein–Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 62: 1693–1701.
- 51Celhar, T., R. Magalhães & A.M. Fairhurst. 2012. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol. Res. 53: 58–77.
- 52Roelofs, M.F., M.H. Wenink, F. Brentano, et al. 2009. Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA). Ann. Rheum. Dis. 68: 1486–1493.
- 53Lalive, P.H., M. Benkhoucha, N.L. Tran, et al. 2014. TLR7 signaling exacerbates CNS autoimmunity through downregulation of Foxp3+ Treg cells. Eur. J. Immunol. 44: 46–57.
- 54Rizzo, F., E. Giacomini, R. Mechelli, et al. 2016. Interferon-β therapy specifically reduces pathogenic memory B cells in multiple sclerosis patients by inducing a FAS-mediated apoptosis. Immunol. Cell Biol. 94: 886–894.
- 55Cappelletti, C., F. Baggi, F. Zolezzi, et al. 2011. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 76: 2079–2088.
- 56Ruprecht, C.R. & A. Lanzavecchia. 2006. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 36: 810–816.
- 57Crampton, S.P., E. Voynova & S. Bolland. 2010. Innate pathways to B cell activation and tolerance. Ann. N.Y. Acad. Sci. 1183: 58–68.
- 58Gilliet, M., W. Cao & Y.-J. Liu. 2008. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8: 594–606.
- 59Cufi, P., P. Soussan, F. Truffault, et al. 2014. Thymoma-associated myasthenia gravis: on the search for a pathogen signature. J. Autoimmun. 52: 29–35.
- 60Cavalcante, P., S. Marcuzzo, S. Franzi, et al. 2017. Epstein–Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator? Oncotarget. 8: 95432–95449.
- 61Kilger, E., A. Kieser, M. Baumann, et al. 1998. Epstein–Barr virus-mediated B cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17: 1700–1709.
- 62Berrih-Aknin, S., S. Ragheb, R. Le Panse, et al. 2013. Ectopic germinal centers, BAFF and anti-B cell therapy in myasthenia gravis. Autoimmun. Rev. 12: 885–893.
- 63Severa, M., E. Giacomini, V. Gafa, et al. 2013. EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur. J. Immunol. 43: 147–158.
- 64Valente, R.M., E. Ehlers, D. Xu, et al. 2012. Toll-like receptor 7 stimulates the expression of Epstein–Barr virus latent membrane protein 1. PLoS One 7: e43317.
- 65Cufi, P., N. Dragin, N. Ruhlmann, et al. 2014. Central role of interferon-beta in thymic events leading to myasthenia gravis. J. Autoimmun. 52: 44–52.
- 66Derkow, K., J.M. Bauer, M. Hecker, et al. 2013. Multiple sclerosis: modulation of Toll-like receptor (TLR) expression by interferon-β includes upregulation of TLR7 in plasmacytoid dendritic cells. PLoS One 8: e70626.
- 67Oh, J.Z., J.S. Kurche, M.A. Burchill, et al. 2011. TLR7 enables cross-presentation by multiple dendritic cell subsets through a type I IFN-dependent pathway. Blood 118: 3028–3038.
- 68Mantegazza, R., S. Bonanno, G. Camera, et al. 2011. Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatr. Dis. Treat. 7: 151–160.
- 69Elshabrawy, H.A., A.E. Essani, Z. Szekanecz, et al. 2017. TLRs, future potential therapeutic targets for RA. Autoimmun. Rev. 16: 103–113.
- 70Balak, D.M., M.B. van Doorn, R.D. Arbeit, et al. 2017. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin. Immunol. 174: 63–72.
- 71Wu, Y., S. He, B. Bai, et al. 2016. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B cell activation and plasma cell formation. Cell. Mol. Immunol. 13: 379–390.
- 72Kanno, A., N. Tanimura, M. Ishizaki, et al. 2015. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat. Commun. 6: 6119.
- 73Gianchecchi, E. & A. Fierabracci. 2015. Gene/environment interactions in the pathogenesis of autoimmunity: new insights on the role of Toll-like receptors. Autoimmun. Rev. 14: 971–983.