Models, movements, and minds: bridging the gap between decision making and action
Corresponding Author
Nathan J. Wispinski
Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
Address for correspondence: Nathan J. Wispinski, Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2R3, Canada. [email protected]Search for more papers by this authorJason P. Gallivan
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
Department of Psychology, Queen's University, Kingston, Ontario, Canada
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
Search for more papers by this authorCraig S. Chapman
Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
Search for more papers by this authorCorresponding Author
Nathan J. Wispinski
Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
Address for correspondence: Nathan J. Wispinski, Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2R3, Canada. [email protected]Search for more papers by this authorJason P. Gallivan
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
Department of Psychology, Queen's University, Kingston, Ontario, Canada
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
Search for more papers by this authorCraig S. Chapman
Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
Search for more papers by this authorAbstract
Decision making is a fundamental cognitive function, which not only determines our day-to-day choices but also shapes the trajectories of our movements, our lives, and our societies. While immense progress has been made in recent years on our understanding of the mechanisms underlying decision making, research on this topic is still largely split into two halves. Good-based models largely state that decisions are made between representations of abstract value associated with available options; while action-based models largely state that decisions are made at the level of action representations. These models are further divided between those that state that a decision is made before an action is specified, and those that regard decision making as an evolving process that continues until movement completion. Here, we review computational models, behavioral findings, and results from neural recordings associated with these frameworks. In synthesizing this literature, we submit that decision making is best understood as a continuous, graded, and distributed process that traverses a landscape of behaviorally relevant options, from their presentation until movement completion. Identifying and understanding the intimate links between decision making and action processing has important implications for the study of complex, goal-directed behaviors such as social communication, and for elucidating the underlying mechanisms by which decisions are formed.
References
- 1Padoa-Schioppa, C. & J.A. Assad. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441: 223–226.
- 2Padoa-Schioppa, C. 2011. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34: 333–359.
- 3Padoa-Schioppa, C. & K.E. Conen. 2017. Orbitofrontal cortex: a neural circuit for economic decisions. Neuron 96: 736–754.
- 4Levy, D.J. & P.W. Glimcher. 2012. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22: 1027–1038.
- 5Cisek, P. 2007. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 1585–1599.
- 6Rangel, A. & T. Hare. 2010. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20: 262–270.
- 7Pezzulo, G. & P. Cisek. 2016. Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends Cogn. Sci. 20: 414–424.
- 8Shadlen, M.N., T.D. Hanks, A.K. Churchland, et al. 2006. The speed and accuracy of a simple perceptual decision: a mathematical primer. In Bayesian Brain: Probabilistic Approaches to Neural Coding. K. Doya, S. Ishii, A. Pouget & R.P.N. Rao. Eds.: 208–237. Cambridge, MA: MIT Press.
10.7551/mitpress/9780262042383.003.0010 Google Scholar
- 9Dorris, M.C. & P.W. Glimcher. 2004. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44: 365–378.
- 10Britten, K.H., M.N. Shadlen, W.T. Newsome & J.A. Movshon. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12: 4745–4765.
- 11Krajbich, I., C. Armel & A. Rangel. 2010. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13: 1292–1298.
- 12Gold, J.I. & M.N. Shadlen. 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30: 535–574.
- 13Bogacz, R. 2007. Optimal decision-making theories: linking neurobiology with behavior. Trends Cogn. Sci. 11: 118–125.
- 14Shadlen, M.N. & D. Shohamy. 2016. Decision making and sequential sampling from memory. Neuron 90: 927–939.
- 15Smith, P.L. & D. Vickers. 1988. The accumulator model of two-choice discrimination. J. Math. Psychol. 32: 135–168.
- 16Link, S.W. 1975. The relative judgment theory of two choice response time. J. Math. Psychol. 12: 114–135.
- 17Ratcliff, R. & J.N. Rouder. 1998. Modeling response times for two-choice decisions. Psychol. Sci. 9: 347–356.
- 18Ratcliff, R. & P.L. Smith. 2004. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111: 333–367.
- 19Ratcliff, R., P.L. Smith, S.D. Brown & G. McKoon. 2016. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20: 260–281.
- 20Green, D.M. & J.A. Swets. 1988. Signal Detection Theory and Psychophysics. Peninsula Publications.
- 21Beck, J.M. et al. 2008. Probabilistic population codes for Bayesian decision making. Neuron 60: 1142–1152.
- 22Bogacz, R., E. Brown, J. Moehlis, et al. 2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113: 700–765.
- 23Noorani, I. & R.H.S. Carpenter. 2016. The LATER model of reaction time and decision. Neurosci. Biobehav. Rev. 64: 229–251.
- 24Drugowitsch, J., R. Moreno-Bote, A.K. Churchland, et al. 2012. The cost of accumulating evidence in perceptual decision making. J. Neurosci. 32: 3612–3628.
- 25Hawkins, G.E., B.U. Forstmann, E.-J. Wagenmakers, et al. 2015. Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. J. Neurosci. 35: 2476–2484.
- 26Thura, D., J. Beauregard-Racine, C.-W. Fradet & P. Cisek. 2012. Decision making by urgency gating: theory and experimental support. J. Neurophysiol. 108: 2912–2930.
- 27Thura, D. & P. Cisek. 2016. On the difference between evidence accumulator models and the urgency gating model. J. Neurophysiol. 115: 622–623.
- 28Usher, M. & J.L. McClelland. 2001. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108: 550–592.
- 29Shadlen, M.N. & R. Kiani. 2013. Decision making as a window on cognition. Neuron 80: 791–806.
- 30Pleskac, T.J. & J.R. Busemeyer. 2010. Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117: 864–901.
- 31Macmillan, N.A. & C. Douglas Creelman. 2004. Detection Theory: A User's Guide. Psychology Press.
10.4324/9781410611147 Google Scholar
- 32Kiani, R., L. Corthell & M.N. Shadlen. 2014. Choice certainty is informed by both evidence and decision time. Neuron 84: 1329–1342.
- 33Palmer, J., A.C. Huk & M.N. Shadlen. 2005. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5: 376–404.
- 34Sugrue, L.P., G.S. Corrado & W.T. Newsome. 2005. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6: 363–375.
- 35Glimcher, P.W. 2010. Foundations of Neuroeconomic Analysis. Oxford University Press.
10.1093/acprof:oso/9780199744251.001.0001 Google Scholar
- 36Kiani, R. & M.N. Shadlen. 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324: 759–764.
- 37Andersen, R.A., G.K. Essick & R.M. Siegel. 1985. Encoding of spatial location by posterior parietal neurons. Science 230: 456–458.
- 38Platt, M.L. & P.W. Glimcher. 1999. Neural correlates of decision variables in parietal cortex. Nature 400: 233–238.
- 39Shadlen, M.N. & W.T. Newsome. 1996. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93: 628–633.
- 40Shadlen, M.N. & W.T. Newsome. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86: 1916–1936.
- 41Roitman, J.D. & M.N. Shadlen. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22: 9475–9489.
- 42Huk, A.C. & M.N. Shadlen. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25: 10420–10436.
- 43Hanks, T.D., J. Ditterich & M.N. Shadlen. 2006. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9: 682–689.
- 44Donner, T.H., M. Siegel, P. Fries & A.K. Engel. 2009. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr. Biol. 19: 1581–1585.
- 45O'Connell, R.G., P.M. Dockree & S.P. Kelly. 2012. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat. Neurosci. 15: 1729–1735.
- 46Krueger, P.M. et al. 2017. Evidence accumulation detected in BOLD signal using slow perceptual decision making. J. Neurosci. Methods 281: 21–32.
- 47Freedman, D.J. & J.A. Assad. 2011. A proposed common neural mechanism for categorization and perceptual decisions. Nat. Neurosci. 14: 143.
- 48Licata, A.M. et al. 2017. Posterior parietal cortex guides visual decisions in rats. J. Neurosci. 37: 4954–4966.
- 49Katz, L.N., J.L. Yates, J.W. Pillow & A.C. Huk. 2016. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535: 285–288.
- 50Yates, J.L., I.M. Park, L.N. Katz, et al. 2017. Functional dissection of signal and noise in MT and LIP during decision-making. Nat. Neurosci. 20: 1285–1292.
- 51Kennerley, S.W. & J.D. Wallis. 2009. Encoding of reward and space during a working memory task in the orbitofrontal cortex and anterior cingulate sulcus. J. Neurophysiol. 102: 3352–3364.
- 52Grattan, L.E. & P.W. Glimcher. 2014. Absence of spatial tuning in the orbitofrontal cortex. PLoS One 9: e112750.
- 53Plassmann, H., J. O'Doherty & A. Rangel. 2007. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27: 9984–9988.
- 54Kable, J.W. & P.W. Glimcher. 2007. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10: 1625–1633.
- 55De Martino, B., D. Kumaran, B. Holt & R.J. Dolan. 2009. The neurobiology of reference-dependent value computation. Neuroimage 47: S117.
10.1016/S1053-8119(09)71082-1 Google Scholar
- 56Cisek, P. & A. Pastor-Bernier. 2014. On the challenges and mechanisms of embodied decisions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369. https://doi.org/10.1098/rstb.2013.0479.
- 57Gallivan, J.P., C.S. Chapman, D.M. Wolpert & J.R. Flanagan. 2018. Decision-making in sensorimotor control. Nat. Rev. Neurosci. 19: 519–534.
- 58Gibson, J.J. 1986. The Ecological Approach to Visual Perception. Psychology Press.
- 59Cisek, P. & J.F. Kalaska. 2010. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33: 269–298.
- 60Baldauf, D. & H. Deubel. 2010. Attentional landscapes in reaching and grasping. Vision Res. 50: 999–1013.
- 61Cisek, P. 2006. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26: 9761–9770.
- 62Christopoulos, V., J. Bonaiuto & R.A. Andersen. 2015. A biologically plausible computational theory for value integration and action selection in decisions with competing alternatives. PLoS Comput. Biol. 11: e1004104.
- 63Christopoulos, V. & P.R. Schrater. 2015. Dynamic integration of value information into a common probability currency as a theory for flexible decision making. PLoS Comput. Biol. 11: e1004402.
- 64Todorov, E. & M.I. Jordan. 2002. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5: 1226–1235.
- 65Fajen, B.R. & W.H. Warren. 2003. Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Exp. Psychol. Hum. Percept. Perform. 29: 343–362.
- 66Spivey, M.J. & R. Dale. 2006. Continuous dynamics in real-time cognition. Curr. Dir. Psychol. Sci. 15: 207–211.
- 67van der Wel, R.P., J.R. Eder, A.D. Mitchel, et al. 2009. Trajectories emerging from discrete versus continuous processing models in phonological competitor tasks: a commentary on Spivey, Grosjean, and Knoblich. J. Exp. Psychol. Hum. Percept. Perform. 35: 588–594.
- 68Zgonnikov, A., A. Aleni, P.T. Piiroinen, et al. 2017. Decision landscapes: visualizing mouse-tracking data. R. Soc. Open Sci. 4: 170482.
- 69Erlhagen, W. & G. Schöner. 2002. Dynamic field theory of movement preparation. Psychol. Rev. 109: 545.
- 70Burk, D., J.N. Ingram, D.W. Franklin, et al. 2014. Motor effort alters changes of mind in sensorimotor decision making. PLoS One 9: e92681.
- 71Resulaj, A., R. Kiani, D.M. Wolpert & M.N. Shadlen. 2009. Changes of mind in decision-making. Nature 461: 263–266.
- 72Selen, L.P.J., M.N. Shadlen & D.M. Wolpert. 2012. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32: 2276–2286.
- 73van den Berg, R. et al. 2016. A common mechanism underlies changes of mind about decisions and confidence. eLife 5: e12192.
- 74Doyle, M. & R. Walker. 2001. Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp. Brain Res. 139: 333–344.
- 75Ludwig, C.J.H. & I.D. Gilchrist. 2003. Target similarity affects saccade curvature away from irrelevant onsets. Exp. Brain Res. 152: 60–69.
- 76Song, J.-H. & K. Nakayama. 2009. Hidden cognitive states revealed in choice reaching tasks. Trends Cogn. Sci. 13: 360–366.
- 77Trommershäuser, J., L.T. Maloney & M.S. Landy. 2008. Decision making, movement planning and statistical decision theory. Trends Cogn. Sci. 12: 291–297.
- 78Welsh, T. & D. Elliott. 2004. Movement trajectories in the presence of a distracting stimulus: evidence for a response activation model of selective reaching. Q. J. Exp. Psychol. A 57: 1031–1057.
- 79Welsh, T.N., D. Elliott & D.J. Weeks. 1999. Hand deviations toward distractors. Evidence for response competition. Exp. Brain Res. 127: 207–212.
- 80Chapman, C.S. et al. 2010. Reaching for the unknown: multiple target encoding and real-time decision-making in a rapid reach task. Cognition 116: 168–176.
- 81Hudson, T.E., L.T. Maloney & M.S. Landy. 2007. Movement planning with probabilistic target information. J. Neurophysiol. 98: 3034–3046.
- 82Gallivan, J.P. et al. 2011. One to four, and nothing more: nonconscious parallel individuation of objects during action planning. Psychol. Sci. 22: 803–811.
- 83Milne, J.L. et al. 2013. Connecting the dots: object connectedness deceives perception but not movement planning. Psychol. Sci. 24: 1456–1465.
- 84Gallivan, J.P. & C.S. Chapman. 2014. Three-dimensional reach trajectories as a probe of real-time decision-making between multiple competing targets. Front. Neurosci. 8: 215.
- 85Wood, D.K. et al. 2011. Visual salience dominates early visuomotor competition in reaching behavior. J. Vis. 11. https://doi.org/10.1167/11.10.16.
- 86Chapman, C.S., J.P. Gallivan & J.T. Enns. 2014. Separating value from selection frequency in rapid reaching biases to visual targets. Vis. Cogn. 23: 249–271.
- 87Chapman, C.S., J.P. Gallivan, J.D. Wong, et al. 2015. The snooze of lose: rapid reaching reveals that losses are processed more slowly than gains. J. Exp. Psychol. Gen. 144: 844–863.
- 88Chapman, C.S. et al. 2014. Counting on the motor system: rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. J. Vis. 14: 30.
- 89Wong, A.L. & A.M. Haith. 2017. Motor planning flexibly optimizes performance under uncertainty about task goals. Nat. Commun. 8: 14624.
- 90Haith, A.M., D.M. Huberdeau & J.W. Krakauer. 2015. Hedging your bets: intermediate movements as optimal behavior in the context of an incomplete decision. PLoS Comput. Biol. 11: e1004171.
- 91Cisek, P. 2012. Making decisions through a distributed consensus. Curr. Opin. Neurobiol. 22: 927–936.
- 92Gallivan, J.P., B.M. Stewart, L.A. Baugh, et al. 2017. Rapid automatic motor encoding of competing reach options. Cell Rep. 18: 1619–1626.
- 93Stewart, B.M., J.P. Gallivan, L.A. Baugh & J.R. Flanagan. 2014. Motor, not visual, encoding of potential reach targets. Curr. Biol. 24: R953–R954.
- 94Pearce, T.M. & D.W. Moran. 2012. Strategy-dependent encoding of planned arm movements in the dorsal premotor cortex. Science 337: 984–988.
- 95Gallivan, J.P., K.S. Barton, C.S. Chapman, et al. 2015. Action plan co-optimization reveals the parallel encoding of competing reach movements. Nat. Commun. 6: 7428.
- 96Gallivan, J.P., L. Logan, D.M. Wolpert & J.R. Flanagan. 2016. Parallel specification of competing sensorimotor control policies for alternative action options. Nat. Neurosci. 19: 320–326.
- 97Cos, I., F. Medleg & P. Cisek. 2012. The modulatory influence of end-point controllability on decisions between actions. J. Neurophysiol. 108: 1764–1780.
- 98Cos, I., N. Bélanger & P. Cisek. 2011. The influence of predicted arm biomechanics on decision making. J. Neurophysiol. 105: 3022–3033.
- 99Cos, I., J. Duque & P. Cisek. 2014. Rapid prediction of biomechanical costs during action decisions. J. Neurophysiol. 112: 1256–1266.
- 100Shadmehr, R., H.J. Huang & A.A. Ahmed. 2016. A representation of effort in decision-making and motor control. Curr. Biol. 26: 1929–1934.
- 101Morel, P., P. Ulbrich & A. Gail. 2017. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control. PLoS Biol. 15: e2001323.
- 102Manohar, S.G. et al. 2015. Reward pays the cost of noise reduction in motor and cognitive control. Curr. Biol. 25: 1707–1716.
- 103Moher, J. & J.-H. Song. 2014. Perceptual decision processes flexibly adapt to avoid change-of-mind motor costs. J. Vis. 14: 1.
- 104Hagura, N., P. Haggard & J. Diedrichsen. 2017. Perceptual decisions are biased by the cost to act. eLife 6: e18422.
- 105Miller, G.A., E. Galanter & K.H. Pribram. 1960. Plans and the Structure of Behavior. Henry Holt and Company.
10.1037/10039-000 Google Scholar
- 106McClelland, J.L. 1979. On the time relations of mental processes: an examination of systems of processes in cascade. Psychol. Rev. 86: 287–330.
- 107Cisek, P. & J.F. Kalaska. 2005. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45: 801–814.
- 108Matsumoto, K. 2003. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301: 229–232.
- 109Rushworth, M., M. Walton, S. Kennerley & D. Bannerman. 2004. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8: 410–417.
- 110Croxson, P.L., M.E. Walton, J.X. O'Reilly, et al. 2009. Effort-based cost–benefit valuation and the human brain. J. Neurosci. 29: 4531–4541.
- 111Gold, J.I. & M.N. Shadlen. 2000. Representation of a perceptual decision in developing oculomotor commands. Nature 404: 390–394.
- 112Louie, K., L.E. Grattan & P.W. Glimcher. 2011. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31: 10627–10639.
- 113Samejima, K. 2005. Representation of action-specific reward values in the striatum. Science 310: 1337–1340.
- 114Lau, B. & P.W. Glimcher. 2008. Value representations in the primate striatum during matching behavior. Neuron 58: 451–463.
- 115Hikosaka, O., K. Nakamura & H. Nakahara. 2006. Basal ganglia orient eyes to reward. J. Neurophysiol. 95: 567–584.
- 116Kim, S., J. Hwang & D. Lee. 2008. Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59: 522.
- 117Mysore, S.P. & E.I. Knudsen. 2011. The role of a midbrain network in competitive stimulus selection. Curr. Opin. Neurobiol. 21: 653–660.
- 118Horwitz, G.D. & W.T. Newsome. 1999. Separate signals for target selection and movement specification in the superior colliculus. Science 284: 1158–1161.
- 119Ikeda, T. & O. Hikosaka. 2003. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39: 693–700.
- 120Wunderlich, K., A. Rangel & J.P. O'Doherty. 2009. Neural computations underlying action-based decision making in the human brain. Proc. Natl. Acad. Sci. USA 106: 17199–17204.
- 121Sohn, J.-W. & D. Lee. 2007. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. J. Neurosci. 27: 13655–13666.
- 122Klaes, C., S. Westendorff, S. Chakrabarti & A. Gail. 2011. Choosing goals, not rules: deciding among rule-based action plans. Neuron 70: 536–548.
- 123Munoz, D.P. & R.H. Wurtz. 1995. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73: 2313–2333.
- 124Basso, M.A. & R.H. Wurtz. 1997. Modulation of neuronal activity by target uncertainty. Nature 389: 66–69.
- 125Platt, M.L. & P.W. Glimcher. 1997. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78: 1574–1589.
- 126Keller, E.L. & R.M. McPeek. 2002. Neural discharge in the superior colliculus during target search paradigms. Ann. N.Y. Acad. Sci. 956: 130–142.
- 127McPeek, R.M., J.H. Han & E.L. Keller. 2003. Competition between saccade goals in the superior colliculus produces saccade curvature. J. Neurophysiol. 89: 2577–2590.
- 128Port, N.L. & R.H. Wurtz. 2003. Sequential activity of simultaneously recorded neurons in the superior colliculus during curved saccades. J. Neurophysiol. 90: 1887–1903.
- 129Costello, M.G., D. Zhu, E. Salinas & T.R. Stanford. 2013. Perceptual modulation of motor—but not visual—responses in the frontal eye field during an urgent-decision task. J. Neurosci. 33: 16394–16408.
- 130Kim, B. & M.A. Basso. 2008. Saccade target selection in the superior colliculus: a signal detection theory approach. J. Neurosci. 28: 2991–3007.
- 131Thevarajah, D., A. Mikulic & M.C. Dorris. 2009. Role of the superior colliculus in choosing mixed-strategy saccades. J. Neurosci. 29: 1998–2008.
- 132Wunderlich, K., A. Rangel & J.P. O'Doherty. 2010. Economic choices can be made using only stimulus values. Proc. Natl. Acad. Sci. USA 107: 15005–15010.
- 133Friedman, J., S. Brown & M. Finkbeiner. 2013. Linking cognitive and reaching trajectories via intermittent movement control. J. Math. Psychol. 57: 140–151.
- 134Lepora, N.F. & G. Pezzulo. 2015. Embodied choice: how action influences perceptual decision making. PLoS Comput. Biol. 11: e1004110.
- 135Meyer, D.E., D.E. Irwin, A.M. Osman & J. Kounios. 1988. The dynamics of cognition and action: mental processes inferred from speed-accuracy decomposition. Psychol. Rev. 95: 183–237.
- 136Abrams, R.A. & D.A. Balota. 1991. Mental chronometry: beyond reaction time. Psychol. Sci. 2: 153–157.
- 137Balota, D.A. & R.A. Abrams. 1995. Mental chronometry: beyond onset latencies in the lexical decision task. J. Exp. Psychol. Learn. Mem. Cogn. 21: 1289.
- 138Rosenbaum, D.A. & S. Kornblum. 1982. A priming method for investigating the selection of motor responses. Acta Psychol. 51: 223–243.
- 139Bub, D.N. & M.E.J. Masson. 2012. On the dynamics of action representations evoked by names of manipulable objects. J. Exp. Psychol. Gen. 141: 502–517.
- 140Fitts, P.M. 1966. Cognitive aspects of information processing. 3. Set for speed versus accuracy. J. Exp. Psychol. 71: 849–857.
- 141Schouten, J.F. & J.A. Bekker. 1967. Reaction time and accuracy. Acta Psychol. 27: 143–153.
- 142Wong, A.L., J. Goldsmith, A.D. Forrence, et al. 2017. Reaction times can reflect habits rather than computations. eLife 6 https://doi.org/10.7554/eLife.28075.
- 143Ghez, C., J. Gordon, M.F. Ghilardi, et al. 1990. Roles of proprioceptive input in the programming of arm trajectories. Cold Spring Harb. Symp. Quant. Biol. 55: 837–847.
- 144Ghez, C. et al. 1997. Discrete and continuous planning of hand movements and isometric force trajectories. Exp. Brain Res. 115: 217–233.
- 145Wispinski, N.J., G. Truong, T.C. Handy & C.S. Chapman. 2017. Reaching reveals that best-versus-rest processing contributes to biased decision making. Acta Psychol. 176: 32–38.
- 146Sullivan, N., C. Hutcherson, A. Harris & A. Rangel. 2015. Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol. Sci. 26: 122–134.
- 147Scherbaum, S., M. Dshemuchadse, R. Fischer & T. Goschke. 2010. How decisions evolve: the temporal dynamics of action selection. Cognition 115: 407–416.
- 148Carlsen, A.N., D. Maslovat, M.Y. Lam, et al. 2011. Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neurosci. Biobehav. Rev. 35: 366–376.
- 149Carlsen, A.N. et al. 2009. Precues enable multiple response preprogramming: evidence from startle. Psychophysiology 46: 241–251.
- 150Forgaard, C.J., D. Maslovat, A.N. Carlsen & I.M. Franks. 2011. Default motor preparation under conditions of response uncertainty. Exp. Brain Res. 215: 235–245.
- 151Klein-Flügge, M.C. & S. Bestmann. 2012. Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing. J. Neurosci. 32: 8373–8382.
- 152Wood, D.K., C. Gu, B.D. Corneil, et al. 2015. Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery. Eur. J. Neurosci. 42: 1919–1932.
- 153Kiani, R., C.J. Cueva, J.B. Reppas & W.T. Newsome. 2014. Dynamics of neural population responses in prefrontal cortex indicate changes of mind on single trials. Curr. Biol. 24: 1542–1547.
- 154Kim, J.-N. & M.N. Shadlen. 1999. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2: 176–185.
- 155Kaufman, M.T., M.M. Churchland, S.I. Ryu & K.V. Shenoy. 2015. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex. eLife 4: e04677.
- 156Pastor-Bernier, A. & P. Cisek. 2011. Neural correlates of biased competition in premotor cortex. J. Neurosci. 31: 7083–7088.
- 157Pastor-Bernier, A., E. Tremblay & P. Cisek. 2012. Dorsal premotor cortex is involved in switching motor plans. Front. Neuroeng. 5: 5.
- 158Chen, X. & V. Stuphorn. 2015. Sequential selection of economic good and action in medial frontal cortex of macaques during value-based decisions. eLife 4: e09418.
- 159Siegel, M., T.J. Buschman & E.K. Miller. 2015. Cortical information flow during flexible sensorimotor decisions. Science, 348: 1352–1355.
- 160Shuler, M.G. & M.F. Bear. 2006. Reward timing in the primary visual cortex. Science 311: 1606–1609.
- 161Stanisor, L., C. van der Togt, C.M.A. Pennartz & P.R. Roelfsema. 2013. A unified selection signal for attention and reward in primary visual cortex. Proc. Natl. Acad. Sci. USA 110: 9136–9141.
- 162Serences, J.T. 2008. Value-based modulations in human visual cortex. Neuron 60: 1169–1181.
- 163Desimone, R. & J. Duncan. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18: 193–222.
- 164Wong, A.L., A.M. Haith & J.W. Krakauer. 2015. Motor planning. Neuroscientist 21: 385–398.
- 165O'Regan, J.K. & A. Noë. 2001. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24: 939–973; discussion 973–1031.
- 166Clark, A. 1997. The dynamical challenge. Cogn. Sci. 21: 461–481.
- 167Rizzolatti, G., L. Fogassi & V. Gallese. 1997. Parietal cortex: from sight to action. Curr. Opin. Neurobiol. 7: 562–567.
- 168Churchland, P.S., V.S. Ramachandran & T.J. Sejnowski. 1994. A critique of pure vision. In Large-Scale Neuronal Theories of the Brain. C. Koch & J.L. Davis, Eds.: 23–60. MIT Press.
- 169James, W. 1980. The Principles of Psychology. Henry Holt and Company.
- 170Murphy, P.R., I.H. Robertson, S. Harty & R.G. O'Connell. 2015. Neural evidence accumulation persists after choice to inform metacognitive judgments. eLife 4. https://doi.org/10.7554/eLife.11946.
- 171Zylberberg, A. et al. 2017. Serial, parallel and hierarchical decision making in primates. eLife 6. https://doi.org/10.7554/eLife.17331.
- 172Doll, B.B., D.A. Simon & N.D. Daw. 2012. The ubiquity of model-based reinforcement learning. Curr. Opin. Neurobiol. 22: 1075–1081.
- 173Urai, A.E., J.W. de Gee & T.H. Donner. 2018. Choice history biases subsequent evidence accumulation. https://doi.org/10.1101/251595.
- 174Pesquita, A., C.S. Chapman & J.T. Enns. 2016. Humans are sensitive to attention control when predicting others’ actions. Proc. Natl. Acad. Sci. USA 113: 8669–8674.
- 175Vaziri-Pashkam, M., S. Cormiea & K. Nakayama. 2017. Predicting actions from subtle preparatory movements. Cognition 168: 65–75.
- 176Gottlieb, J. 2012. Attention, learning, and the value of information. Neuron 76: 281–295.
- 177Chapman, C.S. & M.A. Goodale. 2010. Obstacle avoidance during online corrections. J. Vis. 10: 17.
- 178Chapman, C.S. & M.A. Goodale. 2010. Seeing all the obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance while reaching. Exp. Brain Res. 202: 363–375.
- 179Chapman, C.S., J.P. Gallivan, J.C. Culham & M.A. Goodale. 2011. Mental blocks: fMRI reveals top-down modulation of early visual cortex when obstacles interfere with grasp planning. Neuropsychologia 49: 1703–1717.
- 180Striemer, C.L., C.S. Chapman & M.A. Goodale. 2009. “Real-time” obstacle avoidance in the absence of primary visual cortex. Proc. Natl. Acad. Sci. USA 106: 15996–16001.
- 181Chapman, C.S. & M.A. Goodale. 2008. Missing in action: the effect of obstacle position and size on avoidance while reaching. Exp. Brain Res. 191: 83–97.