Between progress and obstacles in urban climate interdisciplinary studies and knowledge transfer to society
Corresponding Author
Julia Hidalgo
National Center of Scientific Research (CNRS), Laboratoire Interdisciplinaire Solidarités Societés (LISST), Interdisciplinary Center of Urban Studies (CIEU), Toulouse, France
Address for correspondence: Julia Hidalgo, Toulouse Federal University, 5, Allées Antonio Machado, Maison de la Recherche, B421bis, 31058 Toulouse, France. [email protected]Search for more papers by this authorAude Lemonsu
National Center of Meteorological Research, Météo-France/CNRS, Toulouse, France
Search for more papers by this authorValéry Masson
National Center of Meteorological Research, Météo-France/CNRS, Toulouse, France
Search for more papers by this authorCorresponding Author
Julia Hidalgo
National Center of Scientific Research (CNRS), Laboratoire Interdisciplinaire Solidarités Societés (LISST), Interdisciplinary Center of Urban Studies (CIEU), Toulouse, France
Address for correspondence: Julia Hidalgo, Toulouse Federal University, 5, Allées Antonio Machado, Maison de la Recherche, B421bis, 31058 Toulouse, France. [email protected]Search for more papers by this authorAude Lemonsu
National Center of Meteorological Research, Météo-France/CNRS, Toulouse, France
Search for more papers by this authorValéry Masson
National Center of Meteorological Research, Météo-France/CNRS, Toulouse, France
Search for more papers by this authorAbstract
Cities modify their local climate, and at the same time they suffer from the local impacts of climate change. Our paper discusses the progress and obstacles in three active research topics that contribute to increasing the capability within the urban climate research community for transferring local climate knowledge to society. The first is linked to the production of urban surface descriptions useful for urban climate studies. The concept of local climate zones is now widely used to represent urban climate variability at the neighborhood scale. Land-use, morphological, architectural, and social data are also needed, and those are being gathered using different approaches. The second is linked to the necessity for producing information directly connected to their effects on society. This requires a strong multidisciplinary approach, and nowadays impact studies are not limited to one dimension but instead cover multiple dimensions. The third is to transfer all this information to city practitioners, so that urban climate features are considered, among many other aspects, in city management. For urban planning, cartographic tools have been introduced to include urban climate diagnosis as well as recommendations for future urbanization.
References
- 1Oke, T.R. 1987. In Boundary Layer Climates, 2nd Edition. N. Methuen, Ed.: 435. London and New York: Routledge.
- 2Oke, T.R. 1988. The urban energy balance. Prog. Phys. Geogr. 12: 471–508.
- 3Hidalgo, J., V. Masson, A. Baklanov, et al. 2008. Advances in urban climate modeling. Ann. N.Y. Acad. Sci. 1146: 354–374.
- 4Hebbert, M. & F. Mackillop. 2013. Urban climatology applied to urban planning: a postwar knowledge circulation failure. Int. J. Urban Reg. Res. 37: 1542–1558.
- 5Howard, L. 1818. The Climate of London. W. Phillips.
- 6 C. Kassner & S. Vortrage, Eds. 1910. Die meteorologische Grundlagen des Stadtebaues. (The Meteorological Basics of City Planning). Ernst u. Sohn.
- 7 WMO. 2017. Guide to meteorological instruments and methods of observation. Part II, chapters 9 and 10. World Meteorological Organization. http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.
- 8Barlow, J. 2014. Progress in observing and modelling the urban boundary layer. Urban Clim. 10: 216–240.
- 9Masson, V. 2006. Urban surface modelling and the meso-scale impact of cities. Theor. Appl. Climatol. 84: 35–45.
- 10Kanda, M. 2006. Progress in the scale modeling of urban climate: review. Theor. Appl. Climatol. 84: 23–33.
- 11Dabberdt, W., G. Frederick, R. Hardesty, et al. 2004. Advances in meteorological instrumentation for air quality and emergency response. Meteorol. Atmos. Phys. 87: 57–88.
- 12Oke, T.R., G. Mills, A. Christen & J. Voogt. 2017. Urban Climate. Cambridge University Press.
- 13Stewart, I.D. & T.R. Oke. 2012. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93: 1879–1900.
- 14Fenner, D., F. Meier, D. Scherer & A. Polze. 2014. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 10: 308–331.
- 15Leconte, F., J. Bouyer, R. Claverie & M. Pétrissans. 2017. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor. Appl. Climatol. 130: 365–376.
- 16Keung, T.P., A. Knudby, E.S. Krayenhoff, et al. 2016. Microscale mobile monitoring of urban air temperature. Urban Clim. 18: 58–72.
- 17 IAU île-de-France. http://www.iau-idf.fr/savoir-faire/environnement/changement-climatique/chaleur-sur-la-ville.html.
- 18Shepherd, J.M. 2005. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact. 9: 1–27.
- 19Dong, Y., A.C.G. Varquez & M. Kanda. 2017. Global anthropogenic heat flux database with high spatial resolution. Atmos. Environ. 150: 276–294.
- 20 Copernicus. https://land.copernicus.eu/pan-european/corine-land-cover.
- 21Pesaresi, M., D. Ehrlich, S. Ferri, et al. 2016. Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. Publications Office of the European Union. http://publications.jrc.ec.europa.eu/repository/handle/JRC97705.
- 22Pesaresi, M., H. Guo, X. Blaes, et al. 2013. A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6: 2102–2131.
- 23 CNRM. https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki.
- 24 World Urban Database. http://www.wudapt.org.
- 25Bechtel, B., P. Alexander, J. Böhner, et al. 2015. Mapping local climate zones for a worldwide database of form and function of cities. Int. J. Geogr. Inform. 4: 199–219.
- 26Brousse, O., A. Martilli, M. Foley, et al. 2016. WUDAPT, an efficient land use producing data tool for mesoscale models: integration of urban LCZ in WRF over Madrid. Urban Clim. 17: 116–134.
- 27Ching, J., G. Mills, B. Bechtel, et al. 2018. World Urban Database and Access Portal Tools (WUDAPT): an urban weather, climate and environmental modeling infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 99: 1907–1924.
- 28Tornay, N., R. Schoetter, M. Bonhomme, et al. 2017. GENIUS: a methodology to define a detailed description of buildings for urban climate and building energy consumption simulations. Urban Clim. 10: 75–93.
- 29Lindberg, F. 2007. Modelling the urban climate using a local governmental geodatabase. Meteorol. Appl. 14: 263–273.
- 30Ching, J., M. Brown, S. Burian, et al. 2009. National Urban Database and Access Portal Tool. Bull. Am. Meteorol. Soc. 90: 1157–1168.
- 31 European Environment Agency. 2017. Copernicus land monitoring service—urban atlas. https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas.
- 32Samsonov, T.E., P.I. Konstantinov & M.I. Varentsov. 2015. Object-oriented approach to urban canyon analysis and its applications in meteorological modelling. Urban Clim. 13: 122–139.
- 33Kunze, C. & R. Hecht. 2015. Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Comput. Environ. Urban Syst. 53: 4–18.
- 34Bocher, E., G. Petit, J. Bernard & S. Palominos. 2018. A geoprocessing framework to compute urban indicators: the MApUCE tools chain. Urban Clim. 24: 153–174.
- 35Schoetter, R., V. Masson, A. Bourgeois, et al. 2017. Parametrisation of the variety of human behaviour related to building energy consumption in TEB (SURFEX v. 8.2). Geosci. Model Dev. 10: 2801–2831.
- 36Masson, V., C. Marchadier, L. Adolphe, et al. 2014. Adapting cities to climate change: a systemic modelling approach. Urban Clim. 10: 407–429.
- 37Lemonsu, A., V. Viguié, M. Daniel & V. Masson. 2015. Vulnerability to heat-waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 14: 586–605.
- 38Lee, S.H. & S.U. Park. 2008. A vegetated urban canopy model for meteorological and environmental modelling. Bound. Lay. Meteorol. 126: 73–102.
- 39Lemonsu, A., V. Masson, L. Shashua-Bar, et al. 2012. Inclusion of vegetation in the Town Energy Balance model for modeling urban green areas. Geosci. Model Dev. 5: 1377–1393.
- 40De Munck, C., G. Pigeon, V. Masson, et al. 2013. How much air conditioning can increase air temperatures for a city like Paris (France)? Int. J. Climatol. 33: 210–227.
- 41Krayenhoff, E.S., J.L. Santiago, A. Martilli, et al. 2015. Parameterization of drag and turbulence for urban neighbourhoods with trees. Bound. Lay. Meteorol. 156: 157–189.
- 42Stavropulos-Laffaille, X., K. Chancibault, H. Andrieu, et al. 2018. Improvements of the hydrological processes of the Town Energy Balance model (TEB-Veg, SURFEX v7.3) for urban modelling and impact assessment. Geosci. Model Dev. 11: 4175–4194.
- 43Kikegawa, Y., Y. Genchi, H. Yoshikado & H. Kondo. 2003. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy-demands. Appl. Energy 76: 449–466.
- 44Salamanca, F., A. Krpo, A. Martilli & A. Clappier. 2010. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99: 331.
- 45Bueno, B., L. Norford, G. Pigeon & R. Britter. 2012. A resistance–capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate. Build. Environ. 54: 116–125.
- 46Viguié, V., S. Hallegatte & J. Rozenberg. 2014. Downscaling long term socio-economic scenarios at city scale: a case study on Paris. Technol. Forecast. Soc. Change 87: 305–324.
- 47Fanger, P.O. 1972. Thermal Comfort. McGraw-Hill Book Company.
- 48Mayer, H. & P.R. Höppe. 1987. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 38: 43–49.
- 49Leroyer, S., S. Bélair, M. Abrahamowicz, et al. 2015. Numerical weather prediction system dedicated to urban comfort and safety during the 2015 Pan American Games in Toronto (Canada). In 9th International Conference on Urban Climate, Toulouse.
- 50Kusaka, H., M. Hara & Y. Takane. 2012. Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070's August for Tokyo, Osaka, and Nagoya metropolises. J. Meteorol. Soc. Jpn. Ser. II 90B: 47–63.
- 51Argüeso, D., J.P. Evans, A.J. Pitman & A. Di Luca. 2015. Effects of city expansion on heat stress under climate change conditions. PLoS One 10: e0117066.
- 52Daniel, M., A. Lemonsu, M. Déqué, et al. 2018. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Clim. Dyn. https://doi.org/10.1007/s00382-018-4289-x.
- 53de Munck, C., A. Lemonsu, V. Masson, et al. 2018. Evaluating the impacts of greening scenarios on thermal comfort and energy consumptions for adapting Paris city to climate change. Urban Clim. 23: 260–286.
- 54Horsfall, T.C. 1904. Improvement of the Dwellings and Surroundings of the People: the Example of Germany. Manchester: Manchester University Press.
- 55Kratzer, A. 1937. Das Stadtklima [City Climate]. Braunschweig: Friedr. Vieweg & Sohn.
- 56Stock, P. & W. Beckröge. 1985. Klimaanalyse Stadt Essen. Essen: Planungshefte Ruhrgebiet.
- 57Stock, P. 1992. Planning applications of urban and building climatology. In Climatic Classification of Town Areas. K. Höschele, Ed. Karlsruhe: Institut für Meteorologie und Klimaforschung.
- 58Baumüller, J. 2005. Stuttgart21. Version 4. Stuttgart: Amt für Umweltschutz.
- 59Goldreich, Y. 2003. The Climate of Israel: Observation, Research and Application. Springer.
- 60Tanaka, T., T. Ogasawara, H. Koshi & S. Yoshida. 2009. Urban environmental climate maps for supporting urban-planning related work of local governments in Japan: case studies of Yokohama and Sakai. In ICUC-7, Yokohama.
- 61Kusaka, H. 2008. Recent progress on urban climate study in Japan. Geogr. Rev. Jpn. 81: 361–374.
- 62Chapman, L. 2015. Urban meteorological networks: an urban climatologists panacea? In ICUC-9, Toulouse.
- 63Bulkeley, H. & H. Betsill. 2003. Cities and Climate Change. London: Routledge.
- 64 UN. 2011. Cities and climate change: UN-habitat global report on human settlements. 18. 279. London: Earthscan.
- 65 Urban Climate Change Research Network (UCCRN). 2011. Climate change and cities. First assessment report of the Urban Climate Change Research Network. C. Rosenzweig, W.D. Solecki, S.A. Hammer & S. Mehrotra, Eds.: 23. 286, Cambridge: Cambridge University Press,.
- 66Ng, E. & C. Ren. 2015. The Urban Climatic Map: A Methodology for Sustainable Urban Planning. Routledge.
- 67Hidalgo, J., R. Jougla, R. Schoetter, et al. 2018. Taking into account atmospheric dynamics and a plurality of weather situations in urban climate analysis maps. In ICUC-10, New York, NY.
- 68Hidalgo, J., S. Haouès-Jouve & C. Ximena Lopez. 2015. Integration of urban climate issues in urban planning: reflections on which are the keys of success. In ICUC-9, Toulouse.
- 69Webb, B. 2017. The use of urban climatology in local climate change strategies: a comparative perspective. Int. Plan. Stud. 22: 68–84.
- 70Reckien, D., J. Flacke, R. Dawson, et al. 2014. Climate change response in Europe: what's the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Clim. Change 122: 331–340.
- 71Marta, O., S. De Gregorio Hurtado, E. Olazabal, et al. 2014. How are Italian and Spanish cities tackling climate change? A local comparative study. BC3 Working paper series. BC3, Basque.
- 72Heidrich, O., R.J. Dawson, D. Reckien & C.L. Walsh. 2013. Assessment of the climate preparedness of 30 urban areas in the UK. Clim. Change 120: 771–784.
- 73Hamdi, I. & N. Tapper. 2018. Urban climate information to support decision making: from local to global. In Cities and Climate Change Science Conference, Edmonton.
- 74Hidalgo, J., S. Haouès-Jouve, Z. Medhbi, et al. 2018. Initiating climatic awareness in urban planning practices through participatory action research. In Cities and Climate Change Science Conference, Edmonton.
- 75Baklanov, A. 2018. Guide for integrated urban weather, environment and climate services (IUWECS): how it can best meet the needs of researchers and stakeholders. In Cities and Climate Change Science Conference, Edmonton.