Fluid Dynamic Models of Flagellar and Ciliary Beating
ROBERT H. DILLON
Department of Mathematics, Washington State University, Pullman, Washington, USA
Search for more papers by this authorLISA J. FAUCI
Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
Search for more papers by this authorCHARLOTTE OMOTO
School of Biological Sciences, Washington State University, Pullman, Washington, USA
Search for more papers by this authorXINGZHOU YANG
Center for Computational Science, Tulane University, New Orleans, Louisiana, USA
Search for more papers by this authorROBERT H. DILLON
Department of Mathematics, Washington State University, Pullman, Washington, USA
Search for more papers by this authorLISA J. FAUCI
Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
Search for more papers by this authorCHARLOTTE OMOTO
School of Biological Sciences, Washington State University, Pullman, Washington, USA
Search for more papers by this authorXINGZHOU YANG
Center for Computational Science, Tulane University, New Orleans, Louisiana, USA
Search for more papers by this authorAbstract
Abstract: We have developed a fluid–mechanical model of a eucaryotic axoneme that couples the internal force generation of dynein molecular motors, the passive elastic mechanics of microtubules, and forces due to nexin links with a surrounding incompressible fluid. This model has been used to examine both ciliary beating and flagellar motility. In this article, we show preliminary simulation results for sperm motility in both viscous and viscoelastic fluids, as well as multiciliary interaction with a mucus layer.
REFERENCES
- 1 Fauci, L.J. & R. Dillon. 2006. Biofluid mechanics of reproduction. Ann. Rev. Fluid Mech. 38: 371–394.
- 2 Ho, H. & S. Suarez. 2001. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122: 519–526.
- 3 Katz, D., R. Mills & T. Pritchett. 1978. The movement of human spermatazoa in cervical mucus. Biol. Reprod. 25: 931–937.
- 4 Taylor, G.I. 1951. Analysis of the swimming of microorganisms. Proc. R. Soc. Lond. 447–461.
- 5 Gray, J. & G. Hancock. 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32: 802–814.
- 6 Lighthill, J. 1976. Flagellar hydrodynamics. SIAM Rev. 18: 161–230.
- 7 Brokaw, C.J. 1972. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys. J. 12: 564–586.
- 8 Hines, M. & J.J. Blum. 1978. Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophys. J. 23: 41–57.
- 9 Hines, M. & J.J. Blum. 1979. Bend propagation in flagella. II. Incorporating of dynein cross-bridge kinetics into the equations of motion. Biophys. J. 25: 421–442.
- 10 Higdon, J. 1979. A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90: 685–711.
- 11 Higdon, J. 1979. The hydrodynamics analysis of flagellar propulsion: helical waves. J. Fluid Mech. 94: 331–351.
- 12 Higdon, J. 1979. The generation of feeding currents by flagellar motion. J. Fluid Mech. 94: 305–330.
- 13 Phan-thien, N., T. Tran-cong & M. Ramia. 1987. A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184: 533–549.
- 14 Dillon, R. & L.J. Fauci. 2000. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207: 415–430.
- 15 Dillon, R., L.J. Fauci & C. Omoto. 2003. Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility. Dynam. Contin. Discrete Impuls. Systems: Series A 10: 745–757.
- 16 Fulford, G.R., D.F. Katz & R.L. Powell. 1998. Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology 35: 295–309.
- 17 Talbot, P., C. Geiske & M. Knoll. 1999. Oocyte pickup by the mammalian oviduct. Mol. Biol. Cell 10: 5–8.
- 18 Leng, Z., D. Moore, B. Mueller, et al . 1998. Characterization of ciliary activity in distal fallopian tube biopsies of women with obstructive tubal infertility. Hum. Reprod. 11: 3121–3127.
- 19
Witman, G.B.
1990. Introduction to cilia and flagella.
In
Ciliary and Flagellar Membranes. R.A. Bloodgood, Ed.: 1–30. Plenum.
New York
.
10.1007/978-1-4613-0515-6_1 Google Scholar
- 20 Murase, M. 1992. The Dynamics of Cellular Motility. John Wiley. Chichester , UK .
- 21 Brokaw, C.J. 2001. Simulating the effects of fluid viscosity on the behavior of sperm flagella. Math. Meth. Appl. Sci. 24: 1351–1365.
- 22 Lindemann, C.B. 1994. A ‘geometric clutch’ hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168: 175–189.
- 23 Brokaw, C.J. 2005. Computer simulation of flagellar movement IX: oscillation and symmetry breaking in a model for short flagella and nodal cilia. Cell Motil. Cytoskeleton 60: 35–47.
- 24 Dillon, R., L. Fauci & X. Yang. 2006. Sperm motility and multiciliary beating: an integrative mechanical model. Comp. Math. Appl. 17. 52 : 749–758.
- 25 Peskin, C.S. 1977. Numerical analysis of blood flow in the heart. J. Comp. Phys. 25: 220–252.
- 26
Peskin, C.S.
2002. The immersed boundary method.
Acta Numerica
11: 479–517.
10.1017/S0962492902000077 Google Scholar
- 27 Peskin, C.S. & D.M. McQueen. 1989. A three-dimensional computational method for bloodflow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81: 372–405.
- 28 Fogelson, A.L. 1984. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comp. Phys. 56: 111–134.
- 29 Beyer, R. 1992. A computational model of the cochlea using the immersed boundary method. J. Comp. Phys. 98: 145–162.
- 30 Arthurs, K.M., L.C. Moore, C.S. Peskin, et al . 1998. Modeling arteriolar flow and mass transport using the immersed boundary method. J. Comp. Phys. 147: 402–440.
- 31 Eggleton, C.D. & A.S. Popel. 1998. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10: 1834–1845.
- 32 Mittal, R. & G. Iaccarino. 2005. Immersed boundary methods. Ann. Rev. Fluid Mech. 37: 239–261.
- 33 Dillon, R., L.J. Fauci, A. Fogelson & D.P. Gaver. 1996. Modeling biofilm processes using the immersed boundary method. J. Comp. Phys. 129: 57–73.
- 34 Bottino, D.C. 1998. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comp. Phys. 147: 86–113.
- 35 Dillon, R. & H.G. Othmer. 1999. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 197: 295–330.
- 36
Dierckx, P.
1993. Curve and Surface Fitting with Splines. Oxford University Press.
Oxford.
10.1093/oso/9780198534419.001.0001 Google Scholar
- 37 Verdugo, P. 1998. Polymer biophysics of mucusin cystic fibrosis. In Proceedings of the International Congress on Cilia, Mucus, and Mucociliary Interactions. G. Baum, Z. Priel, Y. Roth, N. Liron & E. Ostfeld, Eds.: 167–189. Marcel Dekker. New York .
- 38 Bottino, D.C. 1998. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comp. Phys. 147: 86–113.
- 39 Grotberg, J. 1994. Pulmonary flow and transport phenomena. Ann. Rev. Fluid Mech. 26: 529.
- 40 Sandersonand, M. & M. Sleigh. 1981. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J. Cell Sci. 47: 331.
- 41 Gheber, L. & Z. Priel. 1998. Metachronal wave, ciliary stroke, and mucus propulsion. In Cilia, Mucus, and Mucociliary Interactions. G. Baum, Z. Priel, Y. Roth, N. Liron & E. Ostfeld, Eds.: 103. Marcel Dekker. New York .
- 42 Sturgess, J. 1977. Themucous lining of major bronchi in the rabbit lung. Am. Rev. Resp. Dis. 115: 819.
- 43 Yang, X.-Z., R. Dillon & L. Fauci. An integrative computational model of multiciliary beating. In preparation.