Orbitofrontal Cortex Function and Structure in Depression
WAYNE C. DREVETS
Section on Neuroimaging in Mood and Anxiety Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
Search for more papers by this authorWAYNE C. DREVETS
Section on Neuroimaging in Mood and Anxiety Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
Search for more papers by this authorAbstract
Abstract: The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.
REFERENCES
- 1
WHO. 2001. The World Health Report. http://www.who.int. Chapters 2 and 4.
- 2
Drevets, W.C. &
Price, J.L.
2005. Neuroimaging and neuropathological studies of mood disorders.
In
Biology of Depression: from Novel Insights to Therapeutic Strategies, Vol. 1. J.W.M. Licinio, Ed.: 427–466. Wiley–VCH Verlag GmbH.
Weinheim
,
Germany
.
- 3
Ongur, D.,
A.T. Ferry &
J.L. Price. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex.
J. Comp. Neurol. 460: 425–49.
- 4
Drevets, W.C. &
R.D. Todd. 2005. Depression, mania and related disorders.
In
Adult Psychiatry, 2nd ed. E. Rubin &
C. Zorumski, Ed.: 91–129. Blackwell Publishing, Ltd.
Oxford
.
- 5
Drevets, W.C. &
M.L. Furey. 2007. Emotional disorders: depression and the Brain.
In
New Encyclopedia of Neuroscience. L.R. Squire, Ed. Elsevier Publishing, Inc.
Oxford
,
UK
. In press.
- 6
MacFall, J.R.
et al
. 2001. Medial orbital frontal lesions in late-onset depression.
Biol. Psychiatry
49: 803–806.
- 7
Rajkowska, G.
et al
. 2005. Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients.
Biol. Psychiatry
58: 297–306.
- 8
Ring, H.A.
et al
. 1994. Depression in Parkinson's disease: a positron emission study.
Br. J. Psychiatry
165: 333–339.
- 9
Mayberg, H.S.
et al
. 1990. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson's disease.
Ann. Neurol. 28: 57–64.
- 10
Drevets, W.C.,
K. Gadde &
K.R.R. Krishnan. 2004. Neuroimaging studies of depression.
In
The Neurobiological Foundation of Mental Illness, 2nd ed. D.S. Charney, E. Nestler, B.J. Bunney, Ed.: 461–490. Oxford University Press.
New York
.
- 11
Nugent, A.C.
et al
. 2005. Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry.
Neuroimage
30: 485–497.
- 12
Rajkowska, G.
et al
. 1999. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.
Biol. Psychiatry
45: 1085–1098.
- 13
Lyoo, I.K.
et al
. 2004. Frontal lobe gray matter density decreases in bipolar I disorder.
Biol. Psychiatry
55: 648–651.
- 14
Taylor, W.D.
et al
. 2007. Orbitofrontal cortex volume in late life depression: influence of hyperintense lesions and genetic polymorphisms.
Psychol. Med. 1–11 [Epub ahead of print].
- 15
Drevets, W.C.
et al
. 1997. Subgenual prefrontal cortex abnormalities in mood disorders.
Nature
386: 824–827.
- 16
Hirayasu, Y.
et al
. 1999. Subgenual cingulate cortex volume in first-episode psychosis.
Am. J. Psychiatry
156: 1091–1093.
- 17
Coryell, W.
et al
. 2005. Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications.
Am. J. Psychiatry
162: 1706–1712.
- 18
Botteron, K.N.
et al
. 2002. Volumetric reduction in left subgenual prefrontal cortex in early onset depression.
Biol. Psychiatry
51: 342–344.
- 19
Ongur, D.,
W.C. Drevets &
J.L. Price. 1998. Glial reduction in the subgenual prefrontal cortex in mood disorders.
Proc. Natl. Acad. Sci. USA
95: 13290–13295.
- 20
Bowen, D.M.
et al
. 1989. Circumscribed changes of the cerebral cortex in neuropsychiatric disorders of later life.
Proc. Natl. Acad. Sci. USA
86: 9504–9508.
- 21
Drevets, W.C.
et al
. 2004. Subgenual prefrontal cortex volume decreased in healthy humans at high familial risk for mood disorders.
Soc. Neurosci.
Abstr. 799.19.
- 22
Adler, C.M.
et al
. 2005. Changes in gray matter volume in patients with bipolar disorder.
Biol. Psychiatry
58: 151–157.
- 23
Mayberg, H.S.
et al
. 2005. Deep brain stimulation for treatment-resistant depression.
Neuron
45: 651–660.
- 24
Neumeister, A.
et al
. 2004. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls.
Arch. Gen. Psychiatry
61: 765–773.
- 25
Drevets, W.C.
et al
. 1992. A functional anatomical study of unipolar depression.
J. Neurosci. 12: 3628–3641.
- 26
Drevets, W.C.,
W. Bogers &
M.E. Raichle. 2002. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism.
Eur. Neuropsychopharmacol. 12: 527–544.
- 27
Mayberg, H.S.
et al
. 1999. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness.
Am. J. Psychiatry
156: 675–682.
- 28
Magistretti, P.L.
1999. Cellular mechanisms of brain imaging metabolism and their relevance to functional brain imaging.
Phil. Trans. R. Soc. London Ser. B, Biol. Sci. 354: 1155–1163.
- 29
Baxter, L.R.
et al
. 1989. Reduction of prefrontal cortex glucose metabolism common to three types of depression.
Arch. Gen. Psychiatry
46: 243–250.
- 30
Rajkowska, G.
et al
. 2007. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.
Neuropsychopharmacology
32: 471–482.
- 31
Blumberg, H.P.
et al
. 2003. A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices.
Arch. Gen. Psychiatry
60: 601–609.
- 32
Rauch, S.L.
et al
. 1994. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography.
Arch. Gen. Psychiatry
51: 62–70.
- 33
Kessler, R.C.
et al
. 2005. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.
Arch. Gen. Psychiatry
62: 617–627.
- 34
Drevets, W.
2000. Neuroimaging studies of mood disorders.
Biol. Psychiatry
48: 813–829.
- 35
Ketter, T.A. &
W.C. Drevets. 2002. Neuroimaging studies of bipolar depression: functional neuropathology, treatment effects, and predictors of clinical response.
Clin. Neurosci. Res. 2: 182–192.
- 36
Drevets, W.C.
2001. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders.
Curr. Opin. Neurobiol. 11: 240–249.
- 37
Drevets, W.C.
et al
. 2002. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.
Pharmacol. Biochem. Behav. 71: 431–447.
- 38
Drevets, W.,
E. Spitznagel &
M. Raichle. 1995. Functional anatomical differences between major depressive subtypes.
J. Cereb. Blood Flow Metab. 15: S93.
- 39
Drevets, W.C. &
R. Todd. 2005. Depression, mania and related disorders.
In
Adult Psychiatry, 2nd ed. E. Rubin &
C. Zorumski, Eds.: 91–129. Blackwell Publishing, Ltd.
Oxford
,
UK
.
- 40
Mayberg, H.S.,
et al
. 1992. Paralimbic frontal lobe hypometabolism in depression associated with Huntington's disease.
Neurology
42: 1791–1797.
- 41
Mayberg, H.S.
et al
. 1997. Cingulate function in depression: a potential predictor of treatment response.
Neuroreport
8: 1057–1061.
- 42
Mayberg, H.S.
et al
. 1994. Paralimbic hypoperfusion in unipolar depression.
J. Nucl. Med. 35: 929–934.
- 43
Schneider, F.
et al
. 1995. Mood effects on limbic blood flow correlate with emotional self-rating: a PET study with oxygen-15 labeled water.
Psychiatry Res. 61: 265–283.
- 44
Drevets, W.C.,
J.R. Simpson &
M.E. Raichle. 1995. Regional blood flow changes in response to phobic anxiety and habituation.
J. Cereb. Blood Flow Metab. 15: S856.
- 45
Mogenson, G.J.
et al
. 1993. From motivation to action: a review of dopaminergic regulation of limbic → nucelus accumbens → ventral pallidum → pedunculopontine nucleus circuitries involved in limbic motor integration.
In
Limbic Motor Circuits and Neuropsychiatry. P.W. Kalivas &
C.D. Barnes, Eds. CRC Press.
London
.
- 46
Ongur, D. &
J.L. Price. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
Cereb. Cortex
10: 206–219.
- 47
Rolls, E.T.
1995. A theory of emotion and consciousness, and its application to understanding the neural basis of emotion.
In
The Cognitive Neurosciences. M.S. Gazzaniga, Ed.: 1091–1106. MIT Press.
Cambridge
,
MA
.
- 48
Timms, R.J.
1977. Cortical inhibition and facilitation of the defence reaction [proceedings].
J. Physiol. 266: 98P–99P.
- 49
Bremner, J.D.
et al
. 2003. Regional brain metabolic correlates of alpha-methylparatyrosine-induced depressive symptoms: implications for the neural circuitry of depression.
JAMA
289: 3125–3134.
- 50
Bremner, J.D.,
et al
. 1997. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse.
Arch. Gen. Psychiatry
54: 364–374.
- 51
Brozoski, T.J.
et al
. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey.
Science
205: 929–932.
- 52
Rogers, R.D.
et al
. 1999. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms.
Neuropsychopharmacology
20: 322–339.
- 53
Mayberg, H.S.
et al
. 1999. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness.
Am. J. Psychiatry
156: 675–682.
- 54
Garcia, R.
et al
. 1999. The amygdala modulates prefrontal cortex activity relative to conditioned fear.
Nature
402: 294–296.
- 55
Abercrombie, H.C.
et al
. 1998. Metabolic rate in the right amygdala predicts negative affect in depressed patients.
Neuroreport
9: 3301–3307.
- 56
Osuch, E.
1999. Regional cerebral metabolism unique to anxiety symptoms in affective disorder patients.
Biol. Psychiatry
45: 417.
- 57
Corcoran, K.A. &
G.J. Quirk. 2007. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears.
J. Neurosci. 27: 840–844.
- 58
Sierra-Mercado, D., Jr.
et al
. 2006. Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction.
Eur. J. Neurosci. 24: 1751–1758.
- 59
Dougherty, D.D.
et al
. 2004. Ventromedial prefrontal cortex and amygdala dysfunction during an anger induction positron emission tomography study in patients with major depressive disorder with anger attacks.
Arch. Gen. Psychiatry
61: 795–804.
- 60
Drevets, W.C.,
D. Ongur &
J.L. Price. 1998. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders.
Mol. Psychiatry
3: 220–226, 190–191.
- 61
Benes, F.M.,
S.L. Vincent &
M. Todtenkopf. 2001. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects.
Biol. Psychiatry
50: 395–406.
- 62
Cotter, D.
et al
. 2002. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder.
Cereb. Cortex
12: 386–394.
- 63
Cotter, D.
et al
. 2001. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.
Arch. Gen. Psychiatry
58: 545–553.
- 64
Honer, W.G.
et al
. 1999. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness.
Neuroscience
91: 1247–1255.
- 65
Uranova, N.
et al
. 2001. Electron microscopy of oligodendroglia in severe mental illness.
Brain Res. Bull. 55: 597–610.
- 66
Uranova, N.A.
et al
. 2004. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium.
Schizophr. Res. 67: 269–275.
- 67
Rajkowska, G.,
A. Halaris &
L.D. Selemon. 2001. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder.
Biol. Psychiatry
49: 741–752.
- 68
Johnston-Wilson, N.L.
et al
. 2000. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder.
Stanley Neuropathology Consortium. Mol. Psychiatry
5: 142–149.
- 69
Eastwood, S.L. &
P.J. Harrison. 2000. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs.
Mol. Psychiatry
5: 425–432.
- 70
Rosoklija, G.
et al
. 2000. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings.
Arch. Gen. Psychiatry
57: 349–356.
- 71
Eastwood, S.L. &
P.J. Harrison. 2001. Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders: a review and a Western blot study of synaptophysin, GAP-43 and the complexins.
Brain Res. Bull. 55: 569–578.
- 72
Bezchlibnyk, Y.B.
et al
. 2007. Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder.
J. Psychiatry Neurosci. 32: 203–210.
- 73
Hamidi, M.,
W.C. Drevets &
J.L. Price. 2004. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes.
Biol. Psychiatry
55: 563–569.
- 74
D'Amelio, F.,
L.F. Eng &
M.A. Gibbs. 1990. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system.
Glia
3: 335–341.
- 75
Cheng, J.D. &
J. De Vellis. 2000. Oligodendrocytes as glucocorticoids target cells: functional analysis of the glycerol phosphate dehydrogenase gene.
J. Neurosci. Res. 59: 436–445.
- 76
Alonso, G.
2000. Prolonged corticosterone treatment of adult rats inhibits the proliferation of oligodendrocyte progenitors present throughout white and gray matter regions of the brain.
Glia
31: 219–231.
- 77
Shulman, R.G.
et al
. 2004. Energetic basis of brain activity: implications for neuroimaging.
Trends Neurosci. 27: 489–495.
- 78
Nowak, G.,
G.A. Ordway &
I.A. Paul. 1995. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims.
Brain Res. 675: 157–164.
- 79
Czeh, B.
et al
. 2006. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment.
Neuropsychopharmacology
31: 1616–1626.
- 80
McEwen, B.S. &
A.M. Magarinos. 2001. Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders.
Hum. Psychopharmacol. 16: S7–S19.
- 81
Izquierdo, A.,
C.L. Wellman &
A. Holmes. 2006. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice.
J. Neurosci. 26: 5733–5738.
- 82
Manji, H.K.,
W.C. Drevets &
D.S. Charney. 2001. The cellular neurobiology of depression.
Nat. Med. 7: 541–547.
- 83
Santarelli, L.
et al
. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.
Science
301: 805–809.
- 84
Haddjeri, N.,
P. Blier &
C. De Montigny. 1998. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1 A receptors.
J. Neurosci. 18: 10150–10156.
- 85
Krystal, J.H.
et al
. 2002. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments.
Mol. Psychiatry
7(Suppl. 1): S71–S80.
- 86
Paul, I.A. &
P. Skolnick. 2003. Glutamate and depression: clinical and preclinical studies.
Ann. N.Y. Acad. Sci. 1003: 250–272.
- 87
Stockmeier, C.A.
2003. Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter.
J. Psychiatr. Res. 37: 357–373.
- 88
Drevets, W.C.
et al
. 1999. PET imaging of serotonin 1A receptor binding in depression.
Biol. Psychiatry
46: 1375–1387.
- 89
Sargent, P.A.
et al
. 2000. Brain serotonin1 A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment.
Arch. Gen. Psychiatry
57: 174–180.
- 90
Lopez, J.F.
et al
. 1998. A.E. Bennett Research Award. Regulation of serotonin1 A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression.
Biol. Psychiatry
43: 547–573.
- 91
Moses-Kolko, E.L.,
et al
. 2007. Measurement of 5-HT(1A) receptor binding in depressed adults before and after antidepressant drug treatment using positron emission tomography and [(11)C]WAY-100635.
Synapse
61: 523–530.
- 92
Caspi, A.
et al
. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.
Science
301: 386–389.
- 93
Izquierdo, A.
et al
. 2007. Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys.
Proc. Natl. Acad. Sci. USA
104: 14128–14133.
- 94
Nutt, D.J.
2006. The role of dopamine and norepinephrine in depression and antidepressant treatment.
J. Clin. Psychiatry
67(Suppl 6): 3–8.
- 95
Willner, P.
1995. Dopaminergic mechanisms in depression and mania.
In
Psychopharmacology: the Fourth Generation of Progress. F.E. Bloom &
D.J. Kupfer, Eds.: 921–932. Raven Press.
New York
.
- 96
Lambert, G.
et al
. 2000. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders.
Arch. Gen. Psychiatry
57: 787–793.
- 97
Veith, R.C.
et al
. 1994. Sympathetic nervous system activity in major depression: basal and desipramine-induced alterations in plasma norepinephrine kinetics.
Arch. Gen. Psychiatry
51: 411–422.
- 98
Santamaria, J.,
E. Tolosa &
A. Valles. 1986. Parkinson's disease with depression: a possible subgroup of idiopathic parkinsonism.
Neurology
36: 1130–1133.
- 99
Nestler, E.J. &
W.A. Carlezon, Jr. 2006. The mesolimbic dopamine reward circuit in depression.
Biol. Psychiatry
59: 1151–1159.
- 100
Swerdlow, N.R. &
G.F. Koob. 1987. Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-thalamic function.
Behav. Brain Sci. 10: 197–245.
- 101
Hasler, G.
et al
. 2007. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
Arch. Gen. Psychiatry
64: 193–200.
- 102
Amaral, D.G.
&
R. Insausti. 1992. Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex.
Exp. Brain Res. 88: 375–88.
- 103
Kuroda, M. &
J.L. Price. 1991. Synaptic organization of projections from basal forebrain structures to the mediodorsal thalamic nucleus of the rat.
J. Comp. Neurol. 303: 513–533.
- 104
Bacon, S.J.
et al
. 1996. Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study.
Brain Res. 720: 211–219.
- 105
Amaral, D.G. &
J.L. Price. 1984. Amygdalo-cortical projections in the monkey (Macaca fascicularis).
J. Comp. Neurol. 230: 465–496.
- 106
Russchen, F.T.
et al
. 1985. The amygdalostriatal projections in the monkey: an anterograde tracing study.
Brain Res. 329: 241–257.
- 107
Graybiel, A.M.
1990. Neurotransmitters and neuromodulators in the basal ganglia.
Trends Neurosci. 13: 244–254.
- 108
Sanacora, G.
et al
. 1999. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy.
Arch. Gen. Psychiatry
56: 1043–1047.
- 109
Gold, P.W. &
G.P. Chrousos. 2002. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states.
Mol. Psychiatry
7: 254–275.
- 110
Swaab, D.F.,
A.M. Bao &
P.J. Lucassen. 2005. The stress system in the human brain in depression and neurodegeneration.
Ageing Res. Rev. 4: 141–194.
- 111
Lopez, J.F.
et al
. 1992. Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pituitaries of suicide victims.
Neuroendocrinology
56: 491–501.
- 112
Young, E.A.
et al
. 1993. Dissociation between pituitary and adrenal suppression to dexamethasone in depression.
Arch. Gen. Psychiatry
50: 395–403.
- 113
Gold, P.W.,
W.C. Drevets &
D.S. Charney. 2002. New insights into the role of cortisol and the glucocorticoid receptor in severe depression.
Biol. Psychiatry
52: 381–385.
- 114
Öngür, D.
&
J.L. Price. 2000. Intrinsic and extrinsic connections of networks within the orbital and medial prefrontal cortex.
Cerebral Cortex.
- 115
Sheline, Y.I.
et al
. 2001. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study.
Biol Psychiatry
50: 651–658.
- 116
Fu, C.H.
et al
. 2004. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study.
Arch. Gen. Psychiatry
61: 877–889.
- 117
Elliott, R.
et al
. 2002. The neural basis of mood-congruent processing biases in depression.
Arch. Gen. Psychiatry
59: 597–604.
- 118
Neumeister, A.
et al
. 2006. Effects of a alpha(2C)-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression.
Neuropsychopharmacology
31: 1750–1756.
- 119
Siegle, G.J.
et al
. 2002. Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals.
Biol. Psychiatry
51: 693–707.
- 120
Thomas, K.M.
et al
. 2001. Amygdala response to fearful faces in anxious and depressed children.
Arch. Gen. Psychiatry
58: 1057–1063.
- 121
Altshuler, L.L.
et al
. 1991. Reduction of temporal lobe volume in bipolar disorder: a preliminary report of magnetic resonance imaging.
Arch. Gen. Psychiatry
48: 482–483.
- 122
Baumann, B.,
et al
. 1999. Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a post mortem study.
J. Neuropsych. Clin. Neurosci. 11: 71–78.
- 123
Ongur, D. &
J.L. Price. 1997. Distribution of glucocorticoid receptors in the Macaque central nervous system.
Soc. Neurosci. Abstr. 1494.
- 124
Bowley, M.P.
et al
. 2002. Low glial numbers in the amygdala in major depressive disorder.
Biol. Psychiatry
52: 404–412.
- 125
Eastwood, S.L. &
P.J. Harrison. 2000. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs.
Mol. Psychiatry
5: 425–432.
- 126
Davis, M. &
C. Shi. 1999. The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety?
Ann. N. Y. Acad. Sci. 877: 281–291.
- 127
LeDoux, J.
2003. The emotional brain, fear, and the amygdala.
Cell Mol. Neurobiol. 23: 727–738.
- 128
Likhtik, E.
et al
. 2005. Prefrontal control of the amygdala.
J. Neurosci. 25: 7429–7437.
- 129
Perez-Jaranay, J.M. &
F. Vives. 1991. Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat.
Brain Res. 564: 97–101.
- 130
Garcia, R.
et al
. 1999. The amygdala modulates prefrontal cortex activity relative to conditioned fear.
Nature
402: 294–296.
- 131
Morgan, M.A. &
J.E. LeDoux. 1995. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats.
Behav. Neurosci. 109: 681–688.
- 132
Sullivan, R.M. &
A. Gratton. 1999. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats.
J. Neurosci. 19: 2834–2840.
- 133
Izquierdo, A.,
R.K. Suda &
E.A. Murray. 2005. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys.
J. Neurosci. 25: 8534–8542.
- 134
Machado, C.J. &
J. Bachevalier. 2006. The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta).
Behav. Neurosci. 120: 761–786.
- 135
Herman, J.P. &
W.E. Cullinan. 1997. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis.
Trends Neurosci. 20: 78–84.
- 136
Diorio, D.,
V. Viau &
M.J. Meaney. 1993. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.
J. Neurosci. 13: 3839–3847.
- 137
Schultz, W.,
P. Dayan &
P.R. Montague. 1997. A neural substrate of prediction and reward.
Science
275: 1593–1599.
- 138
Schultz, W.
1997. Dopamine neurons and their role in reward mechanisms.
Curr. Opin. Neurobiol. 7: 191–197.
- 139
Rudebeck, P.H.
et al
. 2006. A role for the macaque anterior cingulate gyrus in social valuation.
Science
313: 1310–1312.
- 140
Izquierdo, A.,
R.K. Suda &
E.A. Murray. 2004. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
J. Neurosci. 24: 7540–7548.
- 141
Goto, Y. &
A.A. Grace. 2005. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior.
Nat. Neurosci. 8: 805–812.
- 142
Hadland, K.A.
et al
. 2003. The effect of cingulate lesions on social behaviour and emotion.
Neuropsychologia
41: 919–931.
- 143
Drevets, W.C.
et al
. 1997. Subgenual prefrontal cortex abnormalities in mood disorders.
Nature
386: 824–827.
- 144
Price, J.L.,
S.T. Carmichael &
W.C. Drevets. 1996. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior?
Prog. Brain Res. 107: 523–536.
- 145
Talairach, J. &
P. Tournoux. 1988. Co-Planar Stereotaxic Axis of the Human Brain. Thieme.
Stuttgart
,
Germany
.
- 146
Knutson, B.
et al
. 2001. Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
J. Neurosci. 21, RC
159
: 1–5.
- 147
Wang, H.
et al.
Differential BOLD response to a monetary incentive delay task in healthy versus depressed subjects. Presented at the Annual Meeting of the Organization of Human Brain Mapping, Chicago, June 10–14, 2007.