Sleep Deprivation and Vigilant Attention
Julian Lim
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
Search for more papers by this authorDavid F. Dinges
Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
Search for more papers by this authorJulian Lim
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
Search for more papers by this authorDavid F. Dinges
Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
Search for more papers by this authorAbstract
Sleep deprivation severely compromises the ability of human beings to respond to stimuli in a timely fashion. These deficits have been attributed in large part to failures of vigilant attention, which many theorists believe forms the bedrock of the other more complex components of cognition. One of the leading paradigms used as an assay of vigilant attention is the psychomotor vigilance test (PVT), a high signal-load reaction-time test that is extremely sensitive to sleep deprivation. Over the last twenty years, four dominant findings have emerged from the use of this paradigm. First, sleep deprivation results in an overall slowing of responses. Second, sleep deprivation increases the propensity of individuals to lapse for lengthy periods (>500 ms), as well as make errors of commission. Third, sleep deprivation enhances the time-on-task effect within each test bout. Finally, PVT results during extended periods of wakefulness reveal the presence of interacting circadian and homeostatic sleep drives. A theme that links these findings is the interplay of “top-down” and “bottom-up” attention in producing the unstable and unpredictable patterns of behavior that are the hallmark of the sleep-deprived state.
References
- 1 James, W. 1890. The Principles of Psychology, Vol. 1. Dover Publications. New York .
- 2 Corbetta, M. & G.L. Shulman. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3: 201–215.
- 3 Sarter, M., B. Givens & J.P. Bruno. 2001. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Brain Res. Rev. 35: 146–160.
- 4 Sturm, W. & K. Willmes. 2001. On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14(1 Pt. 2): S76–S84.
- 5 Posner, M. & S. Boies. 1971. Components of attention. Psychol. Bull. 78: 391–408.
- 6 Fan, J. et al . 2002. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14: 340–347.
- 7 Robertson, I.H. & H. Garavan. 2004. Vigilant attention. In The Cognitive Neurosciences III. M.S. Gazzaniga, Ed. The MIT Press. Cambridge , MA .
- 8 Mackworth, J.F. 1968. Vigilance, arousal, and habituation. Psychol. Rev. 75: 308–322.
- 9 Harrison, Y. & J.A. Horne. 2000. The impact of sleep deprivation on decision making: a review. J. Exp. Psychol. Appl. 6: 236–249.
- 10 Pilcher, J.J. et al . 2007. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention. Aviat. Space Environ. Med. 78(5, Sec. II): B15–B24.
- 11 Lui, M. & R. Tannock. 2007. Working memory and inattentive behaviour in a community sample of children. Behav Brain. Funct. 3: 12.
- 12 Caldwell, J. 2005. Fatigue in aviation. Travel. Med. Infect. Dis. 3: 85–96.
- 13 Lieberman, H.R. et al . 2005. The fog of war: decrements in cognitive performance and mood associated with combat-like stress. Aviat. Space Environ. Med. 76(7 Suppl.): C7–14.
- 14 Lieberman, H.R. et al . 2006. Cognition during sustained operations: comparison of a laboratory simulation to field studies. Aviat. Space Environ. Med. 77: 929–935.
- 15 Dinges, D.F. & J.W. Powell. 1988. Sleepiness is more than lapsing. Sleep Res. 17: 84.
- 16 Dinges, D.F. & N.B. Kribbs. 1991. Performing while sleepy: effects of experimentally-induced sleepiness. In Sleep, Sleepiness and Performance, T.H. Monk, Ed.: 97–128. Wiley: Chister , UK .
- 17 Dorrian, J., N.L. Rogers & D.F. Dinges. 2005. Psychomotor vigilance performance: a neurocognitive assay sensitive to sleep loss. In Sleep Deprivation: Clinical Issues, Pharmacology and Sleep Loss Effects. C. Kushida, Ed.: 39–70. Marcel Dekker. New York .
- 18 Van Dongen, H.P. et al . 2003. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26: 117–126.
- 19 Doran, S.M., H.P. Van Dongen & D.F. Dinges. 2001. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol. 139: 253–267.
- 20 Jewett, M.E. et al . 1999. Dose-response relationship between sleep duration and human psychomotor vigilance and subjective alertness. Sleep 22: 171–179.
- 21 Van Dongen, H.P. & D.F. Dinges. 2003. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance. J. Sleep Res. 12: 181–187.
- 22 Belenky, G. et al . 2003. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J. Sleep Res. 12: 1–12.
- 23 Wesensten, N.J. et al . 2004. Modafinil vs. caffeine: effects on fatigue during sleep deprivation. Aviat. Space Environ. Med. 75: 520–525.
- 24 Wyatt, J.K. et al . 2004. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep 27: 374–381.
- 25 Dinges, D.F. et al . 1997. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20: 267–277.
- 26 Durmer, J.S. & D.F. Dinges. 2005. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 25: 117–129.
- 27 Van Dongen, H.P. et al . 2004. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep 27: 423–433.
- 28 Beaumont, M. et al . 2001. Slow release caffeine and prolonged (64-h) continuous wakefulness: effects on vigilance and cognitive performance. J. Sleep Res. 10: 265–276.
- 29 Pilcher, J.J. & A.I. Huffcutt. 1996. Effects of sleep deprivation on performance: a meta-analysis. Sleep 19: 318–326.
- 30 Smith, M.E., L.K. McEvoy & A. Gevins. 2002. The impact of moderate sleep loss on neurophysiologic signals during working-memory task performance. Sleep 25: 784–794.
- 31 Wilkinson, R.T. 1965. Sleep deprivation. In Physiology of Human Survival. R. Edholm & A. Bacharach, Eds.: 399–430. Academic Press. London
- 32 Dinges, D.F. & J.W. Powell. 1989. Sleepiness impairs optimum response capability. Sleep Res. 18: 366.
- 33 Bjerner, B. 1949. Alpha depression and lowered pulse rate during delayed actions in a serial reaction test: a study of sleep deprivation. Acta Physiol. Scand. 19(Suppl. 65): 1–93.
- 34 Kjellberg, A. 1977. Sleep deprivation and some aspects of performance: 2. Lapses and other attentional effects. Waking Sleeping 1: 145–148.
- 35 Williams, H.L., A. Lubin & J.J. Goodnow. 1959. Impaired performance with acute sleep loss. Psychol. Monogr.: Gen. Appl. 73: 1–26.
- 36
Strijkstra, A.M.
et al
. 2003. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram.
Neurosci. Lett.
340: 17–20.
10.1016/S0304-3940(03)00033-8 Google Scholar
- 37 Cajochen, C. et al . 1995. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18: 890–894.
- 38 Caldwell, J.A. et al . 2004. The effects of 37 hours of continuous wakefulness on the physiological arousal, cognitive performance, self-reported mood, and simulator flight performance of F-117A pilots. Mil. Psychol. 16: 163–181.
- 39 Lorenzo, I. et al . 1995. Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 18: 346–354.
- 40 Marzano, C. et al . 2007. Slow eye movements and subjective estimates of sleepiness predict EEG power changes during sleep deprivation. Sleep 30: 610–616.
- 41 Torsvall, L. & T. Akerstedt. 1987. Sleepiness on the job: continuously measured EEG changes in train drivers. Electroencephalogr. Clin. Neurophysiol. 66: 502–511.
- 42 Caldwell, J.A., B. Prazinko & J.L. Caldwell. 2003. Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep-deprived subjects. Clin. Neurophysiol. 114: 23–31.
- 43 Makeig, S. & T.P. Jung. 1995. Changes in alertness are a principal component of variance in the EEG spectrum. Neuroreport 7: 213–216.
- 44 Belyavin, A. & N.A. Wright. 1987. Changes in electrical activity of the brain with vigilance. Electroencephalogr. Clin. Neurophysiol. 66: 137–144.
- 45 Jung, T.P. et al . 1997. Estimating alertness from the EEG power spectrum. IEEE Trans. Biomed. Eng. 44: 60–69.
- 46 Oken, B.S., M.C. Salinsky & S.M. Elsas. 2006. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117: 1885–1901.
- 47 Wu, J.C. et al . 1991. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep 14: 155–162.
- 48 Wu, J.C. et al . 2006. Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31: 2783–2792.
- 49 Thomas, M. et al . 2000. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9: 335–352.
- 50
Thomas, M.
et al
. 2003. Neural basis of alertness and cognitive performance impairments during sleepiness II. Effects of 48 and 72 h of sleep deprivation on waking human regional brain activity.
Thalamus Relat. Syst.
2: 199–229.
10.1017/S1472928803000207 Google Scholar
- 51 Lawrence, N.S. et al . 2003. Multiple neuronal networks mediate sustained attention. J. Cogn. Neurosci. 15: 1028–1038.
- 52 Sturm, W. et al . 1999. Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37: 797–805.
- 53 Tomasi, D. et al . 2007. Different activation patterns for working memory load and visual attention load. Brain Res. 1132: 158–165.
- 54 Drummond, S.P. et al . 2005. The neural basis of the psychomotor vigilance task. Sleep 28: 1059–1068.
- 55 Weissman, D.H. et al . 2006. The neural bases of momentary lapses in attention. Nat. Neurosci. 9: 971–978.
- 56 Raichle, M.E. et al . 2001. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98: 676–682.
- 57 Fox, M.D. et al . 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102: 9673–9678.
- 58 Portas, C.M. et al . 1998. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J. Neurosci. 18: 8979–8989.
- 59 Chee, M.W. & W.C. Choo. 2004. Functional imaging of working memory after 24 hr of total sleep deprivation. J. Neurosci. 24: 4560–4567.
- 60 Chee, M.W. et al . 2006. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: correlations of fronto-parietal activation with performance. Neuroimage 31: 419–428.
- 61 Lim, J., W.C. Choo & M.W. Chee. 2007. Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task. Sleep 30: 61–70.
- 62 Chee, M.W. & Y.M. Chuah. 2007. Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory after sleep deprivation. Proc. Natl. Acad. Sci. USA 104: 9487–9492.
- 63 Graw, P. et al . 2004. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol. Behav. 80: 695–701.
- 64 Dinges, D.F. et al . 1999. Chronic sleep restriction: neurobehavioral effects of 4 hr, 6 hr, and 8 hr TIB. Sleep 22(Suppl. 1): 115–116.
- 65 Dinges, D.F. et al . 1998. Evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management. Final report for the U.S. Department of Transportation, National Highway Traffic Safety Administration . pp. 1–112.
- 66 Dinges, D.F. et al . 2002. Prospective laboratory re-validation of ocular-based drowsiness detection technologies and countermeasures. In NHTSA Drowsy Driver Detection and Interface Project. W.W. Wierwille, et al ., Eds. DTNH 22-00-D-07007.
- 67 Makeig, S. & T.P. Jung. 1996. Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Brain Res. Cogn. Brain Res. 4: 15–25.
- 68 Townsend, R.E. & L.C. Johnson. 1979. Relation of frequency-analyzed EEG to monitoring behavior. Electroencephalogr. Clin. Neurophysiol. 47: 272–279.
- 69 Makeig, S., T.P. Jung & T.J. Sejnowski. 2000. Awareness during drowsiness: dynamics and electrophysiological correlates. Can. J. Exp. Psychol. 54: 266–273.
- 70 Jones, K. & Y. Harrison. 2001. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med. Rev. 5: 463–475.
- 71 Morris, A.M. et al . 1992. The P300 event-related potential. The effects of sleep deprivation. J. Occup. Med. 34: 1143–1152.
- 72 Gosselin, A., J. De Koninck & K.B. Campbell. 2005. Total sleep deprivation and novelty processing: implications for frontal lobe functioning. Clin. Neurophysiol. 116: 211–222.
- 73 Szelenberger, W., T. Piotrowski & A.J. Dabrowska. 2005. Increased prefrontal event-related current density after sleep deprivation. Acta Neurobiol. Exp. (Wars) 65: 19–28.
- 74 Corsi-Cabrera, M. et al . 1999. Amplitude reduction in visual event-related potentials as a function of sleep deprivation. Sleep 22: 181–189.
- 75 Saper, C.B., G. Cano & T.E. Scammell. 2005. Homeostatic, circadian, and emotional regulation of sleep. J. Comp. Neurol. 493: 92–98.
- 76 Konowal, N.M. et al . 1999. Determinants of microsleeps during experimental sleep deprivation. Sleep 22(Suppl. 1): 328–329.
- 77 Goel, N. et al . 2007. Phenotyping neurobehavioral and cognitive responses to partial sleep deprivation. Sleep 30: A130.
- 78 Gillberg, M. & T. Akerstedt. 1998. Sleep loss and performance: no “safe” duration of a monotonous task. Physiol. Behav. 64: 599–604.
- 79 Richter, S. et al . 2005. Task-dependent differences in subjective fatigue scores. J. Sleep Res. 14: 393–400.
- 80 Steyvers, F.J. & A.W. Gaillard. 1993. The effects of sleep deprivation and incentives on human performance. Psychol. Res. 55: 64–70.
- 81 Sarter, M., W.J. Gehring & R. Kozak. 2006. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51: 145–160.
- 82 Raymann, R.J. & E.J. Van Someren. 2007. Time-on-task impairment of psychomotor vigilance is affected by mild skin warming and changes with aging and insomnia. Sleep 30: 96–103.
- 83 Borbely, A.A. 1982. A two process model of sleep regulation. Hum. Neurobiol. 1: 195–204.
- 84 Borbely, A.A. & P. Achermann. 1999. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 14: 557–568.
- 85 Van Dongen, H.P. & D.F. Dinges. 2000. Circadian rhythm in sleepiness, alertness and performance. In Principles and Practice of Sleep Medicine. M.H. Kryger, T. Roth & W.C. Dement, Eds.: 435–443. W.B. Saunders. Philadelphia , PA .
- 86 Wyatt, J.K. et al . 1999. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am. J. Physiol. 277(4 Pt 2): R1152–R1163.
- 87 Babkoff, H. et al . 1991. Monotonic and rhythmic influences: a challenge for sleep deprivation research. Psychol. Bull. 109: 411–428.
- 88 Edgar, D.M., W.C. Dement & C.A. Fuller. 1993. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13: 1065–1079.
- 89 Abrahamson, E.E., R.K. Leak & R.Y. Moore. 2001. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12: 435–440.
- 90 Basheer, R. et al . 2000. Adenosine as a biological signal mediating sleepiness following prolonged wakefulness. Biol. Signals Recept. 9: 319–327.
- 91 Porkka-Heiskanen, T., R.E. Strecker & R.W. McCarley. 2000. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99: 507–517.
- 92 Porkka-Heiskanen, T. et al . 1997. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276: 1265–1268.
- 93 Elmenhorst, D. et al . 2007. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J. Neurosci. 27: 2410–2415.
- 94 Strecker, R.E. et al . 2000. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav. Brain Res. 115: 183–204.
- 95 Scammell, T.E. et al . 2001. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107: 653–663.
- 96 Blanco-Centurion, C. et al . 2006. Adenosine and sleep homeostasis in the basal forebrain. J. Neurosci. 26: 8092–8100.
- 97 Semba, K. et al . 2001. Sleep deprivation-induced c-fos and junB expression. Behav. Brain Res. 120: 75–86.
- 98 Pace-Schott, E.F. & J.A. Hobson. 2002. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3: 591–605.
- 99 Bonnet, M.H. et al . 2004. Sleep deprivation and stimulant task force of the American Academy of Sleep Medicine. Sleep 28: 1163–1187.
- 100 Kamimori, G.H. et al . 2005. Multiple caffeine doses maintain vigilance during early morning operations. Aviat. Space Environ. Med. 76: 1046–1050.
- 101 McLellan, T.M. et al . 2005. Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat. Space Environ. Med. 76: 39–45.
- 102 Wesensten, N.J. et al . 2002. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology (Berl.) 159: 238–247.
- 103 Lieberman, H.R. et al . 2002. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology (Berl.) 164: 250–261.
- 104 Loke, W.H. & C.J. Meliska. 1984. Effects of caffeine use and ingestion on a protracted visual vigilance task. Psychopharmacology (Berl.) 84: 54–57.
- 105 Horne, J.A. & L.A. Reyner. 1996. Counteracting driver sleepiness: effects of napping, caffeine, and placebo. Psychophysiology 33: 306–309.
- 106 Hayashi, M., A. Masuda & T. Hori. 2003. The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clin. Neurophysiol. 114: 2268–2278.
- 107 Okada, M., K. Mizuno & S. Kaneko. 1996. Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci. Lett. 212: 53–56.
- 108 Salmi, P., K. Chergui & B.B. Fredholm. 2005. Adenosine-dopamine interactions revealed in knockout mice. J. Mol. Neurosci. 26: 239–244.
- 109 Huang, Z.L. et al . 2005. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8: 858–859.
- 110 Kull, B., P. Svenningsson & B.B. Fredholm. 2000. Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol. Pharmacol. 58: 771–777.
- 111 Schiffmann, S.N. et al . 2003. A2A receptor and striatal cellular functions: regulation of gene expression, currents, and synaptic transmission. Neurology 61(11 Suppl. 6): S24–S29.
- 112 Christie, W. et al . 2007. Introduction of the rat-psychomotor vigilance task (RPVT): vigilance impairments produced by adenosine perfusion in the basal forebrain. Sleep 30(Suppl. S): A376–A377.
- 113 Alsene, K. et al . 2003. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 28: 1694–1702.
- 114 Retey, J.V. et al . 2007. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 81: 692–698.
- 115 Retey, J.V. et al . 2006. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. J. Neurosci. 26: 10472–10479.
- 116 Leproult, R. et al . 2003. Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284: R280–R290.
- 117 Ballas, C., D.L. Evans & D.F. Dinges. 2004. Amphetamine, methylphenidate and modafinil. In Textbook of Psychopharmacology. A.F. Schatzberg & C.B. Nemeroff, Eds.: 671–684. American Psychiatric Publishing. Washington , DC .
- 118 Magill, R.A. et al . 2003. Effects of tyrosine, phentermine, caffeine D-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutr. Neurosci. 6: 237–246.
- 119 Waters, W.F. et al . 2003. A comparison of tyrosine against placebo, phentermine, caffeine, and D-amphetamine during sleep deprivation. Nutr. Neurosci. 6: 221–235.
- 120 Wesensten, N.J., W.D. Killgore & T.J. Balkin. 2005. Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. J. Sleep Res. 14: 255–266.
- 121 Wiegmann, D.A. et al . 1996. Methamphetamine effects on cognitive processing during extended wakefulness. Int. J. Aviat. Psychol. 6: 379–397.
- 122 Cochran, J.C. et al . 1992. Parsing attentional components during a simple reaction time task using sleep deprivation and amphetamine intervention. Percept. Mot. Skills 75(3 Pt. 1): 675–689.
- 123 Hartmann, E., M.H. Orzack & R. Branconnier. 1977. Sleep deprivation deficits and their reversal by d- and l-amphetamine. Psychopharmacology (Berl.) 53: 185–189.
- 124 Caldwell, J.A. & J.L. Caldwell. 1997. An in-flight investigation of the efficacy of dextroamphetamine for sustaining helicopter pilot performance. Aviat. Space Environ. Med. 68: 1073–1080.
- 125 Caldwell, J.A., J.L. Caldwell & K.K. Darlington. 2003. Utility of dextroamphetamine for attenuating the impact of sleep deprivation in pilots. Aviat. Space Environ. Med. 74: 1125–1134.
- 126 Kenagy, D.N. et al . 2004. Dextroamphetamine use during B-2 combat missions. Aviat. Space Environ. Med. 75: 381–386.
- 127 Glowinski, J. & J. Axelrod. 1965. Effect of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain. J. Pharmacol. Exp. Ther. 149: 43–49.
- 128 Raiteri, M. et al . 1975. d-Amphetamine as a releaser or reuptake inhibitor of biogenic amines in synaptosomes. Eur. J. Pharmacol. 34: 189–195.
- 129 Koob, G.F. & E.J. Nestler. 1997. The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9: 482–497.
- 130 Leshner, A.I. & G.F. Koob. 1999. Drugs of abuse and the brain. Proc. Assoc. Am. Physicians 111: 99–108.
- 131 Wisor, J.P. et al . 2001. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21: 1787–1794.
- 132 Kume, K. et al . 2005. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25: 7377–7384.
- 133 Baranski, J.V. & R.A. Pigeau. 1997. Self-monitoring cognitive performance during sleep deprivation: effects of modafinil, d-amphetamine and placebo. J. Sleep Res. 6: 84–91.
- 134 Dinges, D.F. et al . 2006. Pharmacodynamic effects on alertness of single doses of armodafinil in healthy subjects during a nocturnal period of acute sleep loss. Curr. Med. Res. Opin. 22: 159–167.
- 135 Pigeau, R. et al . 1995. Modafinil, d-amphetamine and placebo during 64 hours of sustained mental work. I. Effects on mood, fatigue, cognitive performance and body temperature. J. Sleep Res. 4: 212–228.
- 136 Makris, A.P. et al . 2007. Behavioral and subjective effects of d-amphetamine and modafinil in healthy adults. Exp. Clin. Psychopharmacol. 15: 123–133.
- 137 Stivalet, P. et al . 1998. Effects of modafinil on attentional processes during 60 hours of sleep deprivation. Hum. Psychoparmacol. Clin. Exp. 13: 501–507.
- 138 Caldwell, J.A. et al . 2004. Modafinil's effects on simulator performance and mood in pilots during 37 h without sleep. Aviat. Space Environ. Med. 75: 777–784.
- 139 Caldwell, J.A., Jr. et al . 2000. A double-blind, placebo-controlled investigation of the efficacy of modafinil for sustaining the alertness and performance of aviators: a helicopter simulator study. Psychopharmacology (Berl.) 150: 272–282.
- 140 Walsh, J.K. et al . 2004. Modafinil improves alertness, vigilance, and executive function during simulated night shifts. Sleep 27: 434–439.
- 141 Czeisler, C.A. et al . 2005. Modafinil for excessive sleepiness associated with shift-work sleep disorder. N. Engl. J. Med. 353: 476–486.
- 142 Eliyahu, U. et al . 2007. Psychostimulants and military operations. Mil. Med. 172: 383–387.
- 143 Gallopin, T. et al . 2004. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep 27: 19–25.
- 144 Madras, B.K. et al . 2006. Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J. Pharmacol. Exp. Ther. 319: 561–569.
- 145 Zhou, J. et al . 2004. Piperidine-based nocaine/modafinil hybrid ligands as highly potent monoamine transporter inhibitors: efficient drug discovery by rational lead hybridization. J. Med. Chem. 47: 5821–5824.
- 146 Taneja, I. et al . 2005. Modafinil elicits sympathomedullary activation. Hypertension 45: 612–618.
- 147 Scammell, T.E. et al . 2000. Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J. Neurosci. 20: 8620–8628.
- 148 Willie, J.T. et al . 2005. Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates. Neuroscience 130: 983–995.
- 149 Bonnet, M.H. & D.L. Arand. 1995. We are chronically sleep deprived. Sleep 18: 908–911.
- 150 De Pinho, R.S. et al . 2006. Hypersomnolence and accidents in truck drivers: a cross-sectional study. Chronobiol. Int. 23: 963–971.
- 151 Steele, M.T. et al . 1999. The occupational risk of motor vehicle collisions for emergency medicine residents. Acad. Emerg. Med. 6: 1050–1053.
- 152 Arnedt, J.T. et al . 2005. Neurobehavioral performance of residents after heavy night call vs. after alcohol ingestion. JAMA 294: 1025–1033.
- 153 Landrigan, C.P. et al . 2004. Effect of reducing interns' work hours on serious medical errors in intensive care units. N. Engl. J. Med. 351: 1838–1848.
- 154 Lockley, S.W. et al . 2004. Effect of reducing interns' weekly work hours on sleep and attentional failures. N. Engl. J. Med. 351: 1829–1837.