Dopamine Signaling in the Dorsal Striatum Is Essential for Motivated Behaviors
Lessons from Dopamine-Deficient Mice
Richard D. Palmiter
Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington, USA
Search for more papers by this authorRichard D. Palmiter
Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington, USA
Search for more papers by this authorAbstract
Genetically engineered mice that lack tyrosine hydroxylase in all dopaminergic neurons become hypoactive and aphagic, and they starve by 4 weeks of age. However, they can be rescued by daily treatment with l-dopa, which restores activity and feeding for about 10 hours. Thus, these mice can be examined in both dopamine-depleted and dopamine-replete states. A series of behavioral experiments lead to the primary conclusion that in the dopamine-depleted state these mice are not motivated to engage in goal-directed behaviors. Nevertheless, they still have a preference for sucrose, they can learn the location of food rewards, and they can form a conditioned-place preference for drugs. Dopamine signaling can be restored to the striatum by several different viral gene-therapy procedures. Restoring dopamine signaling selectively to the dorsal striatum is sufficient to allow feeding, locomotion, and reward-based learning. The rescued mice appear to have normal motivation to engage in all goal-directed behaviors that have been tested. The results suggest that dopamine facilitates the output from dorsal striatum, which provides a permissive signal allowing feeding and other goal-directed behaviors.
References
- 1 Dickinson, A. & B.W. Balleine. 2002. The role of learning in the operation of motivational systems. In : Learning, Motivation and Emotion, Volume 3 of Steven's Handbook of Experimental Psychology. 3rd ed. C.R. Gallistel, Ed.: 497–533. John Wiley & Sons. New York .
- 2 Berridge, K.K. & T.E. Robinson. 1998. What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience. Brain Res. Rev. 28: 309–369.
- 3 Salamone, J.D. & M. Correa. 2002. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137: 3–25.
- 4 Baldo, B.A. & A.E. Kelley. 2007. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology 191: 439–459.
- 5 Grill, J.J. 2006. Distributed neural control of energy balance: contributions from the hindbrain and hypothalamus. Obesity 14: 216S–221S.
- 6 Berthoud, H.-R. 2004. Mind versus metabolism in the control of food intake and energy balance. Physiol. Behav. 81: 781–793.
- 7 Morton, G.J. et al . 2006. Central nervous system control of food intake and body weight. Nature 443: 289–295.
- 8 Szczypka, M.S. et al . 2001. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30: 819–828.
- 9 Wise, R.A. 2006. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. Ser. B. Biol. Sci. 361: 1149–1158.
- 10 Carr, K.D. 2002. Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol. Behav. 76: 353–364.
- 11 Kalivas, P.W. & N.D. Volkow. 2005. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162: 1403–1413.
- 12 Kelley, A.E. et al . 2005. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86: 773–795.
- 13 Carlsson, A. 2001. A half-century of neurotransmitter research: impact on neurology and psychiatry (Nobel Lecture). Chembiochem 2: 484–493.
- 14 Hornykiewicz, O. 2002. Dopamine miracle: from brain homogenate to dopamine replacement. Movement Disord. 17: 501–508.
- 15 Ungerstedt, U. 1971. Adipsia and aphagia after 6-hydroxy dopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scan. (Suppl.) 367: 95–122.
- 16 Elmquist, J.K. et al . 1999. From lesions to leptin: hypothalamic control of food intake. Neuron 22: 221–232.
- 17 Salamone, J.D. et al . 2005. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr. Opin. Pharmacol. 5: 34–41.
- 18 Ungerstedt, U. 1971. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand. (Suppl.) 367: 49–68.
- 19 Zigmond, M.J. & E.M. Striker. 1989. Animal models of Parkinsonism using selective neurotoxins: clinical implications. Int. Rev. Neurobiol. 31: 1–79.
- 20 Breese, G.R. et al . 1984. Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. J. Pharmacol. Exp. Ther. 231: 343–354.
- 21 Potter, B.M. & J.P. Bruno. 1989. Food intake of rats depleted of dopamine as neonates is impaired by inhibition of catecholamine biosynthesis. Neurosci. Lett. 107: 295–300.
- 22 Rogers, D.C. & S.B. Dunnett. 1989. Hypersensitivity to α-methyl-p-tyrosine suggests that behavioural recovery of rats receiving neonatal 6-OHDA lesions is mediated by residual catecholamine biosynthesis. Neurosci. Lett. 102: 108–113.
- 23 Brot, M.D. et al . 2002. Neonatal 6-hydroxydopamine administration to mice is fatal. Dev. Neurosci. 24: 531–538.
- 24 Zhou, Q.-Y. & R.D. Palmiter. 1995. Dopamine-deficient mice are severely hypoactive, adipsic and aphagic. Cell 83: 1197–1209.
- 25 Zhou, Q.-Y. et al . 1995. Targeted disruption of tyrosine hydroxylase gene reveals that catecholamines are essential for mouse development. Nature 374: 640–643.
- 26 Thomas, S.A. et al . 1995. Norepinephrine is essential for mouse development. Nature 374: 643–646.
- 27 Ebert, S.N. et al . 2004. Targeted insertion of the Cre-recombinase gene at the phenylethanolamine n-methyltransferase locus: a new model for studying the developmental distribution of adrenergic cells. Dev. Dyn. 231: 849–858.
- 28 Thomas, S.A. & R.D. Palmiter. 1997. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387: 94–97.
- 29 Thomas, S.A. & R.D. Palmiter. 1997. Impaired maternal behavior in mice lacking norepinephrine and epinephrine. Cell 91: 583–592.
- 30 Murchison, C.F. et al . 2004. A distinct role for norepinephrine in memory retrieval. Cell 117: 131–143.
- 31 Olson, V.G. et al . 2006. Noradrenergic signaling by the nucleus tractus solitarius plays an important role in mediating opiate reward. Science 311: 1017–1020.
- 32 Rommelfanger, K.S. et al . 2007. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc. Natl. Acad. Sci. USA 104: 13804–13809.
- 33 Rios, M. et al . 1999. Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J. Neurosci. 19: 3519–3526.
- 34 Kim, D.S. et al . 2002. Dopamine-dependent desensitization of dopaminergic signaling in the developing mouse striatum. J. Neurosci. 22: 9841–9849.
- 35 Bamford, N.S. et al . 2004. Dopamine modulates release from corticostriatal terminals. J. Neurosci. 24: 9541–9552.
- 36 Robinson, S. et al . 2004. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: effects of dopamine receptor activation and anesthesia. Proc. Natl. Acad. Sci. USA 36: 13329–13334.
- 37 Kim, D.S. et al . 2000. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J. Neurosci. 20: 4405–4413.
- 38
Kim, D.S.
et al
. 2006. Reversal of supersensitive striatal D1 receptor signaling and extracellular signal-regulated kinase activity in dopamine-deficient mice.
Neuroscience
137: 1381–1388.
10.1016/j.neuroscience.2005.10.054 Google Scholar
- 39 Sotnikova, T.D. et al . 2005. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol. 3: e271.
- 40 Hall, W.G. 1985. What we know and don't know about the development of independent ingestion in rats. Appetite 6: 333–356.
- 41 Szczypka, M.S. et al . 1999. Feeding behavior in dopamine-deficient mice. Proc. Natl. Acad. Sci. USA 96: 12138–12143.
- 42 Cannon, C.M. & R.D. Palmiter. 2003. Reward without dopamine. J. Neurosci. 23: 10827–10831.
- 43 Hnasko, T.S. et al . 2004. A role for dopamine in feeding responses produced by orexigenic agents. Brain Res. 1023: 309–318.
- 44 Ritter, S. et al . 2001. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J. Comp. Neurol. 432: 197–216.
- 45 Szczypka, M.S. et al . 2000. Dopamine is required for hyperphagia of Lepob/ob mice. Nat. Genet. 25: 102–104.
- 46 Kim, D.S. & R.D. Palmiter. 2003. Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc. Natl. Acad. Sci. USA 100: 1346–1351.
- 47 Robinson, S. et al . 2005. Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav. Neurosci. 119: 5–15.
- 48 Hnasko, T.S. et al . 2005. Morphine reward in dopamine-deficient mice. Nature 438: 854–857.
- 49 Hnasko, T.S. et al . 2007. Cocaine conditioned place preference in dopamine-deficient mice is mediated by serotonin. J. Neurosci. 27: 12484–12488.
- 50 Heusner, C.L. et al . 2003. Viral restoration of dopamine to the nucleus accumbens is sufficient to induce locomotor response to amphetamine. Brain Res. 980: 266–274.
- 51 Sotak, B.N. et al . 2005. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res. 1061: 88–96.
- 52 Hnasko, T.S. et al . 2006. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc. Natl. Acad. Sci. USA 103: 8858–8863.
- 53 Hnasko, T.S. et al . 2007. Genetic disruption of dopamine production results in pituitary denomas and severe prolactinemia. Neuroendocrinology 86: 48–57.
- 54 Robinson, S. et al . 2006. Local dopamine production in dorsal striatum restores goal-directed behavior in dopamine-deficient mice. Behav. Neurosci. 120: 196–200.
- 55 Robinson, S. et al . 2006. Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology 191: 567–578.
- 56 Drago, J. et al . 1994. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl. Acad. Sci. USA 91: 12564–12568.
- 57 Kobayashi, M. et al . 2003. Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc. Natl. Acad. Sci. USA 101: 11465–11470.
- 58 Blackburn, J.R. et al . 1992. Dopamine functions in appetitive and defensive behaviours. Prog. Neurobiol. 39: 247–279.
- 59 Baldo, B.A. et al . 2002. Effects of selective dopamine D1 or D2 receptor blockade within the nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav. Brain Res. 137: 165–177.
- 60 Cannon, C.M. et al . 2004. Dysregulation of striatal dopamine signaling by amphetamine inhibits feeding by hungry mice. Neuron 44: 509–520.
- 61 Gerfen, C.R. 1992. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 15: 285–320.
- 62 Grace, A.A. 1995. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug Alcohol Depend. 37: 111–129.
- 63 Overton, P.G. & D. Clark. 1997. Burst firing in midbrain dopaminergic neurons. Brain Res. Rev. 25: 312–334.
- 64 Wightman, R.M. 2006. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science 311: 1570–1574.
- 65 Wilson, C.J. & Y. Kawaguchi. 1996. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16: 2397–2410.
- 66 Nicola, S.M. et al . 2000. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23: 185–215.
- 67 Vroon, P. et al . 2004. Putting a spin on dorsal-ventral divide of the striatum. Trends Neurosci. 27: 468–474.
- 68 Wickens, J.R. et al . 2007. Striatal contributions to reward and decision making. Ann. N. Y. Acad. Sci. 1104: 192–212.