Basic and Clinical Immunology of Siglecs
Stephan Von Gunten
Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
Search for more papers by this authorBruce S. Bochner
Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
Search for more papers by this authorStephan Von Gunten
Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
Search for more papers by this authorBruce S. Bochner
Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
Search for more papers by this authorAbstract
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
References
- 1
Crocker, P.R.
et al
. 1998. Siglecs: a family sialic-acid binding lectins.
Glycobiology
8: v–vi.
- 2
Varki, A. &
T. Angata. 2006. Siglecs – the major sub-family of I-type lectins.
Glycobiology
16: 1R-27R.
- 3
Brinkman-Van der Linden, E.C.
et al
. 2007. Human-specific expression of Siglec-6 in the placenta.
Glycobiology
17: 922–931.
- 4
Angata, T.,
N.M. Varki &
A. Varki. 2001. A second uniquely human mutation affecting sialic acid biology.
J. Biol. Chem.
276: 40282–40287.
- 5
Angata, T.
et al
. 2004. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms.
Proc. Natl. Acad. Sci. USA
101: 13251–13256.
- 6
Aizawa, H.
et al
. 2003. Molecular analysis of human Siglec-8 orthologs relevant to mouse eosinophils: identification of mouse orthologs of Siglec-5 (mSiglec-F) and Siglec-10 (mSiglec-G).
Genomics
82: 521–530.
- 7
Zhang, J.Q.
et al
. 2004. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils.
Eur. J. Immunol.
34: 1175–1184.
- 8
Tateno, H.,
P.R. Crocker &
J.C. Paulson. 2005. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6’-sulfo-sialyl Lewis X as a preferred glycan ligand.
Glycobiology
15: 1125–1135.
- 9
Hoffmann, A.
et al
. 2007. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population.
Nat. Immunol.
8: 695–704.
- 10
Nguyen, D.H.
et al
. 2006. Loss of Siglec expression on T lymphocytes during human evolution.
Proc. Natl. Acad. Sci. USA
103: 7765–7770.
- 11
Zhang, M.
et al
. 2007. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils.
Blood
109: 4280–4287.
- 12
Paulson, J.C.,
O. Blixt &
B.E. Collins. 2006. Sweet spots in functional glycomics.
Nat. Chem. Biol.
2: 238–248.
- 13
Crocker, P.R.,
J.C. Paulson &
A. Varki. 2007. Siglecs and their roles in the immune system.
Nat. Rev. Immunol.
7: 255–266.
- 14
Aizawa, H.,
J. Plitt &
B.S. Bochner. 2002. Human eosinophils express two siglec-8 splice variants.
J. Allergy Clin. Immunol.
109: 176.
- 15
Avril, T.
et al
. 2006. Negative regulation of leucocyte functions by CD33-related siglecs.
Biochem. Soc. Trans.
34: 1024–1027.
- 16
Crocker, P.R.
et al
. 1998. Siglecs: a family of sialic-acid binding lectins.
Glycobiology
8: v–vi.
- 17
Crocker, P.R. &
A. Varki. 2001. Siglecs in the immune system.
Immunology
103: 137–145.
- 18
Crocker, P.R. &
A. Varki. 2001. Siglecs, sialic acids and innate immunity.
Trends Immunol.
22: 337–342.
- 19
Crocker, P.R.
2002. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling.
Curr. Opin. Struct. Biol.
12: 609–615.
- 20
Crocker, P.R.
2005. Siglecs in innate immunity.
Curr. Opin. Pharmacol.
5: 431–437.
- 21
Collins, B.E. &
J.C. Paulson. 2004. Cell surface biology mediated by low affinity multivalent protein-glycan interactions.
Curr. Opin. Chem. Biol.
8: 617–625.
- 22
Altheide, T.K.
et al
. 2006. System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution.
J. Biol. Chem.
281: 25689–25702.
- 23
Bock, N. &
S. Kelm. 2006. Binding and inhibition assays for Siglecs.
Methods Mol. Biol.
347: 359–375.
- 24
Von Gunten, S. &
H.U. Simon. 2006. Sialic acid binding immunoglobulin-like lectins may regulate innate immune responses by modulating the life span of granulocytes.
Faseb J.
20: 601–605.
- 25
Varki, A.
2007. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins.
Nature
446: 1023–1029.
- 26
Varki, N.M. &
A. Varki. 2007. Diversity in cell surface sialic acid presentations: implications for biology and disease.
Lab. Invest.
87: 851–857.
- 27
McMillan, S.J. &
P.R. Crocker. 2008. CD33-related sialic-acid-binding immunoglobulin-like lectins in health and disease.
Carbohydr. Res.
343: 2050–2056.
- 28
Crocker, P.R.
et al
. 1991. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages.
Embo. J.
10: 1661–1669.
- 29
Munday, J.,
H. Floyd &
P.R. Crocker. 1999. Sialic acid binding receptors (siglecs) expressed by macrophages.
J. Leukoc. Biol.
66: 705–711.
- 30
Hartnell, A.
et al
. 2001. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations.
Blood
97: 288–296.
- 31
McWilliam, A.S.,
P. Tree &
S. Gordon. 1992. Interleukin 4 regulates induction of sialoadhesin, the macrophage sialic acid-specific receptor.
Proc. Natl. Acad. Sci. USA
89: 10522–10526.
- 32
Van Den Berg, T.K.
et al.
1996. Regulation of sialoadhesin expression on rat macrophages. Induction by glucocorticoids and enhancement by IFN-beta, IFN-gamma, IL-4, and lipopolysaccharide.
J. Immunol.
157: 3130–3138.
- 33
Kirchberger, S.
et al
. 2005. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression.
J. Immunol.
175: 1145–1152.
- 34
York, M.R.
et al
. 2007. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists.
Arthritis Rheum.
56: 1010–1020.
- 35
Blixt, O.
et al
. 2003. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein.
J. Biol. Chem.
278: 31007–31019.
- 36
Van Den Berg, T.K.
et al
. 2001. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1).
J. Immunol.
166: 3637–3640.
- 37
Nath, D.
et al
. 1999. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin.
Immunology
98: 213–219.
- 38
Vanderheijden, N.
et al
. 2003. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages.
J. Virol.
77: 8207–8215.
- 39
Delputte, P.L.
et al
. 2007. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin.
J. Virol.
81: 9546–9550.
- 40
Jones, C.,
M. Virji &
P.R. Crocker. 2003. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake.
Mol. Microbiol.
49: 1213–1225.
- 41
Monteiro, V.G.
et al
. 2005. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages.
Parasitol Res.
97: 380–385.
- 42
Biesen, R.
et al
. 2008. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus.
Arthritis Rheum.
58: 1136–1145.
- 43
Pulliam, L.,
B. Sun &
H. Rempel. 2004. Invasive chronic inflammatory monocyte phenotype in subjects with high HIV-1 viral load.
J. Neuroimmunol.
157: 93–98.
- 44
Van Der Kuyl, A.C.
et al
. 2007. Sialoadhesin (CD169) expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression.
PLoS ONE
2: e257. doi:DOI: 10.1371/journal.pone.0000257.
- 45
Ip, C.W.
et al
. 2007. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice.
Neurobiol. Dis.
25: 105–111.
- 46
Kobsar, I.
et al
. 2006. Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0.
Mol. Cell Neurosci.
31: 685–691.
- 47
Jiang, H.R.
et al
. 2006. Sialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis.
J. Immunol.
177: 2258–2264.
- 48
Oetke, C.
et al
. 2006. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels.
Mol. Cell Biol.
26: 1549–1557.
- 49
Tedder, T.F.,
J.C. Poe &
K.M. Haas. 2005. CD22: A Multifunctional Receptor That Regulates B Lymphocyte Survival and Signal Transduction.
Adv. Immunol.
88: 1–50.
- 50
Nitschke, L.
2005. The role of CD22 and other inhibitory co-receptors in B-cell activation.
Curr. Opin. Immunol.
17: 290–297.
- 51
Wakabayashi, C.
et al
. 2002. A distinct signaling pathway used by the IgG-containing B cell antigen receptor.
Science
298: 2392–2395.
- 52
Kimura, N.
et al
. 2007. Human B-lymphocytes express alpha2–6-sialylated 6-sulfo-N-acetyllacto-samine serving as a preferred ligand for CD22/Siglec-2.
J. Biol. Chem.
282: 32200–32207.
- 53
Onodera, T.
et al
. 2008. CD22 regulates time course of both B cell division and antibody response.
J. Immunol.
180: 907–913.
- 54
Poe, J.C.
et al
. 2004. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms.
Nat. Immunol.
5: 1078–1087.
- 55
Ghosh, S.,
C. Bandulet &
L. Nitschke. 2006. Regulation of B cell development and B cell signalling by CD22 and its ligands alpha2,6-linked sialic acids.
Int. Immunol.
18: 603–611.
- 56
Collins, B.E.
et al
. 2006. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling.
Nat. Immunol.
7: 199–206.
- 57
Steinfeld, S.D. &
P. Youinou. 2006. Epratuzumab (humanised anti-CD22 antibody) in autoimmune diseases.
Expert Opin. Biol. Ther.
6: 943–949.
- 58
Leonard, J.P. &
D.M. Goldenberg. 2007. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies.
Oncogene
26: 3704–3713.
- 59
Andrews, R.G.,
B. Torok-Storb &
I.D. Bernstein. 1983. Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies.
Blood
62: 124–132.
- 60
Griffin, J.D.
et al
. 1984. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells.
Leuk. Res.
8: 521–534.
- 61
Peiper, S.C.,
R.A. Ashmun &
A.T. Look. 1988. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen.
Blood
72: 314–321.
- 62
Freeman, S.D.
et al
. 1995. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules.
Blood
85: 2005–2012.
- 63
Yokoi, H.
et al
. 2006. Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells.
Allergy
61: 769–776.
- 64
Biedermann, B.
et al
. 2007. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors.
Leuk. Res.
31: 211–220.
- 65
Von Gunten, S.
et al.
2005. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment.
Blood
106: 1423–1431.
- 66
Andrews, R.G.
et al
. 1986. The L4F3 antigen is expressed by unipotent and multipotent colony-forming cells but not by their precursors.
Blood
68: 1030–1035.
- 67
Robertson, M.J.
et al
. 1992. Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia.
Blood
79: 2229–2236.
- 68
Valent, P.
et al
. 1989. Mast cell typing: demonstration of a distinct hematopoietic cell type and evidence for immunophenotypic relationship to mononuclear phagocytes.
Blood
73: 1778–1785.
- 69
Valent, P.
et al
. 1990. Further characterization of surface membrane structures expressed on human basophils and mast cells.
Int. Arch. Allergy Appl. Immunol.
91: 198–203.
- 70
Valent, P. &
P. Bettelheim. 1992. Cell surface structures on human basophils and mast cells. Biochemical and functional characterization.
Adv. Immunol.
52: 333–423.
- 71
Taylor, V.C.
et al
. 1999. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2.
J. Biol. Chem.
274: 11505–11512.
- 72
Ulyanova, T.
et al
. 1999. The sialoadhesin CD33 is a myeloid-specific inhibitory receptor.
Eur. J. Immunol.
29: 3440–3449.
- 73
Paul, S.P.
et al
. 2000. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2.
Blood
96: 483–490.
- 74
Walter, R.B.
et al
. 2008. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2.
J. Leukoc. Biol.
83: 200–211.
- 75
Vitale, C.
et al
. 1999. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells.
Proc. Natl. Acad. Sci. USA
96: 15091–15096.
- 76
Vitale, C.
et al
. 2001. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells.
Proc. Natl. Acad. Sci. USA
98: 5764–5769.
- 77
Balaian, L.,
R.K. Zhong &
E.D. Ball. 2003. The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with Syk and/or ZAP-70 expression.
Exp. Hematol.
31: 363–371.
- 78
Ferlazzo, G.
et al
. 2000. Engagement of CD33 surface molecules prevents the generation of dendritic cells from both monocytes and CD34+ myeloid precursors.
Eur. J. Immunol.
30: 827–833.
- 79
Lajaunias, F.,
J.M. Dayer &
C. Chizzolini. 2005. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling.
Eur. J. Immunol.
35: 243–251.
- 80
Orr, S.J.
et al
. 2007. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover.
Blood
109: 1061–1068.
- 81
Walter, R.B.
et al
. 2008. Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor.
Traffic
9: 267–279.
- 82
Grobe, K. &
L.D. Powell. 2002. Role of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity.
Blood
99: 3188–3196.
- 83
Linenberger, M.L.
2005. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance.
Leukemia
19: 176–182.
- 84
Pagano, L.
et al
. 2007. The role of Gemtuzumab Ozogamicin in the treatment of acute myeloid leukemia patients.
Oncogene
26: 3679–3690.
- 85
Tsimberidou, A.M.
et al
. 2006. The role of gemtuzumab ozogamicin in acute leukaemia therapy.
Br. J. Haematol.
132: 398–409.
- 86
Sievers, E.L.
2000. Clinical studies of new “biologic” approaches to therapy of acute myeloid leukemia with monoclonal antibodies and immunoconjugates.
Curr. Opin. Oncol.
12: 30–35.
- 87
Sievers, E.L.
2001. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse.
Expert Opin. Biol. Ther.
1: 893–901.
- 88
Legrand, O.
et al
. 2000. The immunophenotype of 177 adults with acute myeloid leukemia: proposal of a prognostic score.
Blood
96: 870–877.
- 89
Bross, P.F.
et al
. 2001. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid.
Leukemia Clin. Cancer Res.
7: 1490–1496.
- 90
Tchilian, E.Z.
et al
. 1994. Molecular cloning of two isoforms of the murine homolog of the myeloid CD33 antigen.
Blood
83: 3188–3198.
- 91
Brinkman-Van der Linden, E.C.
et al
. 2003. CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice.
Mol. Cell Biol.
23: 4199–4206.
- 92
Vyas, A.A.
et al
. 2002. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration.
Proc. Natl. Acad. Sci. USA
99: 8412–8417.
- 93
Quarles, R.H.
2007. Myelin-associated glycoprotein (MAG): past, present and beyond.
J. Neurochem.
100: 1431–1448.
- 94
Kursula, P.
2008. Structural properties of proteins specific to the myelin sheath.
Amino Acids
34: 175–185.
- 95
Mehta, N.R.
et al
. 2007. Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells.
J. Biol. Chem.
282: 27875–27886.
- 96
Sun, J.
et al
. 2004. Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides.
Glycobiology
14: 851–857.
- 97
Swanson, B.J.
et al
. 2007. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4 a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion.
Cancer Res.
67: 10222–10229.
- 98
Pan, B.
et al
. 2005. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice.
Exp. Neurol.
195: 208–217.
- 99
Cornish, A.L.
et al
. 1998. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33.
Blood
92: 2123–2132.
- 100
Connolly, N.P.,
M. Jones &
S.M. Watt. 2002. Human Siglec-5: tissue distribution, novel isoforms and domain specificities for sialic acid-dependent ligand interactions.
Br. J. Haematol.
119: 221–238.
- 101
Ghannadan, M.
et al
. 2002. Detection of novel CD antigens on the surface of human mast cells and basophils.
Int. Arch. Allergy Immunol.
127: 299–307.
- 102
Virgo, P.
et al
. 2003. Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias.
Br. J. Haematol.
123: 420–430.
- 103
Erickson-Miller, C.L.
et al
. 2003. Characterization of Siglec-5 (CD170) expression and functional activity of anti-Siglec-5 antibodies on human phagocytes.
Exp. Hematol.
31: 382–388.
- 104
Hampton, M.B.,
A.J. Kettle &
C.C. Winterbourn. 1998. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing.
Blood
92: 3007–3017.
- 105
Winterbourn, C.C.
et al
. 2006. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing.
J. Biol. Chem.
281: 39860–39869.
- 106
Rapoport, E.M.
et al
. 2005. Sialoside-binding macrophage lectins in phagocytosis of apoptotic bodies.
Biochemistry (Mosc).
70: 330–338.
- 107
Avril, T.
et al
. 2005. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation.
J. Biol. Chem.
280: 19843–198451.
- 108
Gunnarsson, P.
et al
. 2007. The acute-phase protein alpha 1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (siglecs).
Faseb J.
21: 4059–4069.
- 109
Angata, T.
et al
. 2006. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates.
Faseb J.
20: 1964–1973.
- 110
Takei, Y.
et al
. 1997. Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta.
Cytogenet Cell Genet.
78: 295–300.
- 111
Patel, N.
et al
. 1999. OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily.
J. Biol. Chem.
274: 22729–22738.
- 112
Florian, S.
et al
. 2006. Detection of novel leukocyte differentiation antigens on basophils and mast cells by HLDA8 antibodies.
Allergy
61: 1054–1062.
- 113
Falco, M.
et al
. 1999. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells.
J. Exp. Med.
190: 793–802.
- 114
Nicoll, G.
et al
. 1999. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes.
J. Biol. Chem.
274: 34089–34095.
- 115
Angata, T. &
A. Varki. 2000. Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily.
Glycobiology
10: 431–438.
- 116
Ikehara, Y.,
S.K. Ikehara &
J.C. Paulson. 2004. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9.
J. Biol. Chem.
279: 43117–43125.
- 117
Yamaji, T.
et al
. 2002. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9.
J. Biol. Chem.
277: 6324–6332.
- 118
Avril, T.
et al
. 2004. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells.
J. Immunol.
173: 6841–6849.
- 119
Avril, T.
et al
. 2006. Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression.
J. Leukoc. Biol.
80: 787–796.
- 120
Orr, S.J.
et al
. 2007. SOCS3 Targets Siglec 7 for Proteasomal Degradation and Blocks Siglec 7-mediated Responses.
J. Biol. Chem.
282: 3418–3422.
- 121
Vitale, C.
et al
. 2001. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: Engagement of CD33 induces apoptosis of leukemic cells.
Proc. Natl. Acad. Sci. USA.
98: 5764–5769.
- 122
Scott, C.J.
et al
. 2008. Immunocolloidal targeting of the endocytotic siglec-7 receptor using peripheral attachment of siglec-7 antibodies to poly(lactide-co-glycolide) nanoparticles.
Pharm. Res.
25: 135–146.
- 123
Kikly, K.K.
et al
. 2000. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells and basophils.
J. Allergy Clin. Immunol.
105: 1093–1100.
- 124
Floyd, H.
et al
. 2000. Siglec-8: a novel eosinophil-specific member of the immunoglobulin superfamily.
J. Biol. Chem.
275: 861–866.
- 125
Guo, J.P.
et al
. 2007. Siglec-8 and Siglec-F: inhibitory receptors on eosinophils, basophils and mast cells.
Allergy Clin. Immunol. Inter. J. World Allergy Org.
19: 54–59.
- 126
Von Gunten, S. &
B.S. Bochner. 2008. Expression and function of Siglec-8 in human eosinophils, basophils and mast cells. In
Allergy Frontiers: From Epigenetics to Future Perspectives. R. Pawankar,
S. Holgate &
L.J. Rosenwasser, Eds. Springer-Verlag.
Tokyo
(in press).
- 127
Foussias, G.,
G.M. Yousef &
E.P. Diamandis. 2000. Molecular characterization of a Siglec-8 variant containing cytoplasmic tyrosine-based motifs, and mapping of the Siglec-8 gene.
Biochem. Biophys. Res. Commun.
278: 775–781.
- 128
Munday, J.
et al
. 2001. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor.
Biochem. J.
355: 489–497.
- 129
Nutku, E.
et al
. 2004. Expression and function of Siglec-8 isoforms in human eosinophils, basophils and mast cells. In
Allergy Frontiers and Futures, Proceedings of the 24th Symposium of the Collegium Internationale Allergologicum. J. Bienenstock,
J. Ring &
A.G. Togias, Eds.: 130–132. Hogrefe and Huber.
Cambridge
,
Massachusetts
.
- 130
Nutku, E.
et al
. 2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis.
Blood
101: 5014–5020.
- 131
Nutku, E.,
S.A. Hudson &
B.S. Bochner. 2005. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury.
Biochem. Biophys. Res. Commun.
336: 918–924.
- 132
Von Gunten, S.
et al
. 2007. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies.
J. Allergy Clin. Immunol.
119: 1005–1011.
- 133
Nutku-Bilir, E.,
S.A. Hudson &
B.S. Bochner. 2008. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways.
Am. J. Respir. Cell Mol. Biol.
38: 121–124.
- 134
Landwehr, L.P.
et al
. 1998. Benefits of high-dose i.v. immunoglobulin in patients with severe steroid-dependent asthma.
Chest
114: 1349–1356.
- 135
O’Donnell, B.F.
et al
. 1998. Intravenous immunoglobulin in autoimmune chronic urticaria.
Br. J. Dermatol.
138: 101–106.
- 136
Tsurikisawa, N.
et al
. 2004. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin.
Ann. Allergy Asthma Immunol.
92: 80–87.
- 137
Yokoi, H.
et al
. 2008. Inhibition of FcɛRI-dependent mediator release and calcium flux from human mast cells by Siglec-8 engagement.
J. Allergy Clin. Immunol.
121: 499–505.
- 138
Stevens, W.W.
et al
. 2007. Detection and quantitation of eosinophils in the murine respiratory tract by flow cytometry.
J. Immunol. Methods.
327: 63–74.
- 139
Ohnmacht, C.
et al
. 2007. Analysis of eosinophil turnover in vivo reveals their active recruitment to and prolonged survival in the peritoneal cavity.
J. Immunol.
179: 4766–4774.
- 140
Voehringer, D.,
N. Van Rooijen &
R.M. Locksley. 2007. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages.
J. Leukoc. Biol.
81: 1434–1444.
- 141
Kearley, J.
et al
. 2007. Anti-Siglec-F antibody treatment during allergen-induced airway inflammation reduces eosinophil numbers but has no effect on airway hyperreactivity in vivo.
Am. J. Respir. Crit. Care Med.
175: A690 (abstr.).
- 142
Zimmermann, N.
et al
. 2008. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils.
Allergy.
63: 1156–1163.
- 143
Bochner, B.S.
et al
. 2005. Glycan array screening reveals a candidate ligand for Siglec-8.
J. Biol. Chem.
280: 4307–4312.
- 144
Rapoport, E.M.
et al
. 2006. Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides.
Biochemistry (Mosc).
71: 496–504.
- 145
Tateno, H.
et al
. 2007. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity.
Mol. Cell Biol.
27: 5699–5710.
- 146
Guo, J.
et al
. 2007. Ligands for Siglec-8 and Siglec-F: binding characteristics and tissue distribution.
J. Allergy Clin. Immunol.
119: S299 (abstr.).
- 147
Angata, T. &
A. Varki. 2000. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs.
J. Biol. Chem.
275: 22127–22135.
- 148
Zhang, J.Q.
et al
. 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes.
J. Biol. Chem.
275: 22121–22126.
- 149
Yamaji, T.
et al
. 2005. Characterization of inhibitory signaling motifs of the natural killer cell receptor Siglec-7: attenuated recruitment of phosphatases by the receptor is attributed to two amino acids in the motifs.
Glycobiology
15: 667–676.
- 150
Von Gunten, S.
et al.
(2006. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations.
Blood
108: 4255–4259.
- 151
Buenz, E.J. &
C.L. Howe. 2007. Appropriate use of intravenous immunoglobulin in neonatal neutropenia.
J. Perinatol.
27: 196–197; author reply 197.
- 152
Yu, Z.
et al
. 2001. mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain- containing protein tyrosine phosphatases SHP-1 and SHP-2.
Biochem. J.
353: 483–492.
- 153
Li, N.
et al
. 2001. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells.
J. Biol. Chem.
276: 28106–28112.
- 154
Whitney, G.
et al
. 2001. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33.
Eur. J. Biochem.
268: 6083–6096.
- 155
Yousef, G.M.
et al
. 2001. Molecular characterization, tissue expression, and mapping of a novel Siglec-like gene (SLG2) with three splice variants.
Biochem. Biophys. Res. Commun.
284: 900–910.
- 156
Kitzig, F.
et al
. 2002. Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1.
Biochem. Biophys. Res. Commun.
296: 355–362.
- 157
Whitney, G.
et al
. 2001. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33.
Eur. J. Biochem.
268: 6083–6096.
- 158
Azuma, C.
et al
. 1986. Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with the murine homologue.
Nucleic Acids Res.
14: 9149–9158.
- 159
Angata, T.
et al
. 2002. Cloning and characterization of human Siglec-11. A recently evolved signaling that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia.
J. Biol. Chem.
277: 24466–24474.
- 160
Angata, T.
et al
. 2007. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution.
Glycobiology
17: 838–846.
- 161
Blasius, A.L. &
M. Colonna. 2006. Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H.
Trends Immunol.
27: 255–260.
- 162
Blasius, A.L.
et al
. 2006. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12.
Blood
107: 2474–2476.
- 163
Zhang, J.
et al
. 2006. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors.
Blood
107: 3600–3608.
- 164
Campanero-Rhodes, M.A.
et al
. 2006. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding.
Biochem. Biophys. Res. Commun.
344: 1141–1146.
- 165
Cao, H.
et al
. 2008. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans.
Eur. J. Immunol. 38: 2303–2315.