FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z

Benoit B. Mandelbrot

Mathematics Department Harvard University Cambridge. Massachusetts 02138

IBM T. J. Watson Research Center Yorktown Heights, New York 10598

Search for more papers by this author
First published: December 1980
Cited by: 111
First page image

Number of times cited: 111

  • , Part 9 References, Universality in Chaos, 10.1201/9780203734636-50, (609-632), (2017).
  • , Cities in Disequilibrium, Non-Equilibrium Social Science and Policy, 10.1007/978-3-319-42424-8_6, (81-96), (2017).
  • , Generating an image that affords slant perception from stereo, without pictorial cues, Displays, 46, (16), (2017).
  • , Investigation of the Quaternion Dynamical System, Journal of Applied Mathematics and Physics, 05, 01, (131), (2017).
  • , Crack growth: Does microstructure play a role?, Engineering Fracture Mechanics, (2017).
  • , VThreads: A novel VLIW chip multiprocessor with hardware-assisted PThreads, Microprocessors and Microsystems, 47, (466), (2016).
  • , The Brainarium: An Interactive Immersive Tool for Brain Education, Art, and Neurotherapy, Computational Intelligence and Neuroscience, 2016, (1), (2016).
  • , How a life-like system emerges from a simplistic particle motion law, Scientific Reports, 10.1038/srep37969, 6, 1, (2016).
  • , Interactive Evolutionary Generative Art, Research and Development in Intelligent Systems XXXIII, 10.1007/978-3-319-47175-4_28, (377-382), (2016).
  • , Quaternion Julia Set Shape Optimization, Computer Graphics Forum, 34, 5, (167-176), (2015).
  • 2015 20th Asia and South Pacific Design Automation Conference (ASP-DAC) Chiba, Japan The 20th Asia and South Pacific Design Automation Conference IEEE , (2015). 978-1-4799-7792-5 Optimizing thread-to-core mapping on manycore platforms with distributed Tag Directories , (2015). 429 434 7059044 , 10.1109/ASPDAC.2015.7059044 http://ieeexplore.ieee.org/document/7059044/
  • , Fractals as objects with nontrivial structures at all scales, Chaos, Solitons & Fractals, 75, (218), (2015).
  • , Classifying and quantifying basins of attraction, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 8, (083101), (2015).
  • 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS) Hyderabad, India 2015 IEEE International Parallel and Distributed Processing Symposium IEEE , (2015). 978-1-4799-8649-1 Modeling Energy Consumption of Lock-Free Queue Implementations , (2015). 229 238 7161512 , 10.1109/IPDPS.2015.31 http://ieeexplore.ieee.org/document/7161512/
  • , Colored HOMFLY and generalized Mandelbrot set, Journal of High Energy Physics, 2015, 11, (2015).
  • , Cycles of the Logistic Map, International Journal of Bifurcation and Chaos, 24, 01, (1450005), (2014).
  • , Spectral Triple and Sinai–Ruelle–Bowen Measures, Complex Analysis and Operator Theory, 8, 7, (1513), (2014).
  • , SkelCL: a high-level extension of OpenCL for multi-GPU systems, The Journal of Supercomputing, 69, 1, (25), (2014).
  • , Amenable groups without finitely presented amenable covers, Bulletin of Mathematical Sciences, 10.1007/s13373-013-0031-5, 3, 1, (73-131), (2013).
  • , TSALLIS ENTROPY COMPOSITION AND THE HEISENBERG GROUP, International Journal of Geometric Methods in Modern Physics, 10, 07, (1350032), (2013).
  • , Self-Similarity in Game-Locked Aggregation, Chinese Physics Letters, 29, 12, (128903), (2012).
  • , Harmonic Analysis in Discrete Dynamical Systems, International Journal of Modern Nonlinear Theory and Application, 01, 01, (14), (2012).
  • , Mandelbrot Set + Symmetry Groups ∗ Higher Dimensions = ?, Discrete & Computational Geometry, (2012).
  • , FAMILY OF INVARIANT CANTOR SETS AS ORBITS OF DIFFERENTIAL EQUATIONS II: JULIA SETS, International Journal of Bifurcation and Chaos, 21, 01, (77), (2011).
  • Distributed Processing, Workshops and Phd Forum (IPDPSW) Anchorage, AK, USA 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum IEEE , (2011). 978-1-61284-425-1 SkelCL - A Portable Skeleton Library for High-Level GPU Programming , (2011). 1176 1182 6008967 , 10.1109/IPDPS.2011.269 http://ieeexplore.ieee.org/document/6008967/
  • , Alliterative logic: A theory for postnormal times, Futures, 43, 2, (209), (2011).
  • , Development and electrical characterization of carbon soot filled polyester graded composites, Materials & Design, 31, 8, (3672), (2010).
  • , Fractal initial conditions and natural parameter values in hybrid inflation, Physical Review D, 80, 12, (2009).
  • , Fractal structures in nonlinear dynamics, Reviews of Modern Physics, 10.1103/RevModPhys.81.333, 81, 1, (333-386), (2009).
  • , A general view of pseudoharmonics and pseudoantiharmonics to calculate external arguments of Douady and Hubbard, Applied Mathematics and Computation, 213, 2, (484), (2009).
  • , Rates of recurrence for real extensions of complex dynamics, Journal of Interdisciplinary Mathematics, 10.1080/09720502.2008.10700587, 11, 5, (617-627), (2008).
  • , References, Chaotic Modelling and Simulation, 10.1201/9781420079012.bmatt, (303-344), (2010).
  • , Midgets of superior Mandelbrot set, Chaos, Solitons & Fractals, 36, 2, (237), (2008).
  • , The divisor periodic point of escape-time N of the Mandelbrot set, Applied Mathematics and Computation, 187, 2, (1552), (2007).
  • , A counting result on two-dimension with error terms, Complex Variables and Elliptic Equations, 10.1080/17476930701228626, 52, 6, (485-494), (2007).
  • , On periodic and chaotic regions in the Mandelbrot set, Chaos, Solitons & Fractals, 32, 1, (15), (2007).
  • , Staggered passive micromixers with fractal surface patterning, Journal of Micromechanics and Microengineering, 16, 11, (2298), (2006).
  • , Non-vanishing derivatives of Lyapunov exponents and the pressure function, Dynamical Systems, 21, 4, (491), (2006).
  • , On the relation between mathematical and numerical relativity, Classical and Quantum Gravity, 23, 16, (S307), (2006).
  • , Self-similar structure in the distribution and density of the partition function zeros, Physics Letters A, 320, 2-3, (180), (2003).
  • , Fractals, Encyclopedia of Physical Science and Technology, 10.1016/B0-12-227410-5/00259-3, (185-207), (2003).
  • , How to work with one-dimensional quadratic maps, Chaos, Solitons & Fractals, 18, 5, (899), (2003).
  • , Parameter space of one-parameter complex mappings, Chaos, Solitons & Fractals, 13, 4, (761), (2002).
  • , FIND THE MANDELBROT-LIKE SETS IN ANY MAPPING, Fractals, 10, 02, (137), (2002).
  • , GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS, International Journal of Bifurcation and Chaos, 12, 08, (1755), (2002).
  • , Thermodynamics of Chaos and Fractals Applied: Evolution of the Earth and Phase Transformations, Earthquake Thermodynamics and Phase Transformations in the Earth's Interior, 10.1016/S0074-6142(01)80078-4, (25-80), (2001).
  • , Growth in complex exponential dynamics, Computers & Graphics, 24, 1, (115), (2000).
  • , Process Systems Engineering, 2. Modeling and Simulation, Ullmann's Encyclopedia of Industrial Chemistry, (2012).
  • , CHAOTIC BURST IN THE DYNAMICS OF A CLASS OF NONCRITICALLY FINITE ENTIRE FUNCTIONS, International Journal of Bifurcation and Chaos, 09, 06, (1137), (1999).
  • , Julia sets in the quaternions, Chaos and Fractals, 10.1016/B978-044450002-1/50038-2, (235-246), (1998).
  • , The “burning ship” and its quasi-Julia sets, Chaos and Fractals, 10.1016/B978-044450002-1/50048-5, (287-290), (1998).
  • , Color maps generated by “trigonometric iteration loops”, Chaos and Fractals, 10.1016/B978-044450002-1/50040-0, (251-252), (1998).
  • , Toward a better understanding of fractality in nature, Chaos and Fractals, 10.1016/B978-044450002-1/50016-3, (79-92), (1998).
  • , Quasiconformal Homeomorphisms and Dynamics III. The Teichmüller Space of a Holomorphic Dynamical System, Advances in Mathematics, 135, 2, (351), (1998).
  • , Veinerization: a new shape description for flexible skeletonization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 5, (505), (1998).
  • , Fractal analysis of the electromyographic interference pattern, Journal of Neuroscience Methods, 58, 1-2, (103), (1995).
  • , Generalization of the Mandelbrot set: Quaternionic quadratic maps, Chaos, Solitons & Fractals, 5, 6, (971), (1995).
  • , Spirals in the Mandelbrot set I, Physica A: Statistical Mechanics and its Applications, 205, 4, (634), (1994).
  • , Evaluating rescaled range analysis for time series, Annals of Biomedical Engineering, 22, 4, (432), (1994).
  • , Bibliography, Rational Iteration, 10.1515/9783110889314.183, (1993).
  • , A language to describe the growth of neurites, Biological Cybernetics, 68, 6, (559), (1993).
  • , Process simulation in the complex domain, AIChE Journal, 39, 3, (461-470), (2004).
  • , Formulae for cycles in the Mandelbrot set II, Physica A: Statistical Mechanics and its Applications, 190, 1-2, (104), (1992).
  • , The “burning ship” and its quasi-Julia sets, Computers & Graphics, 16, 4, (435), (1992).
  • , Formulae for cycles in the Maldelbrot set III, Physica A: Statistical Mechanics and its Applications, 190, 1-2, (117), (1992).
  • , A simple algorithm giving an interesting Mandelbrot set, The Visual Computer, 8, 3, (200), (1992).
  • , Bibliography, , 10.1016/S0049-237X(08)70025-9, (603-641), (1992).
  • , Formulae for cycles in the Mandelbrot set, Physica A: Statistical Mechanics and its Applications, 177, 1-3, (416), (1991).
  • , Toward a better understanding of fractality in nature, Computers & Graphics, 15, 4, (583), (1991).
  • , Simple process equations, fixed‐point methods, and chaos, AIChE Journal, 36, 5, (641-654), (2004).
  • , Color maps generated by “trigonometric iteration loops”, Computers & Graphics, 14, 1, (125), (1990).
  • , An application of fractal dimension to the detection of transients in the electroencephalogram, Electroencephalography and Clinical Neurophysiology, 75, 4, (296), (1990).
  • , Un demi-siecle de fractales: 1870–1920, Historia Mathematica, 17, 4, (339), (1990).
  • First IEEE Conference on Visualization: Visualization `90 San Francisco, CA, USA 23-26 Oct. 1990 Proceedings of the First IEEE Conference on Visualization: Visualization `90 IEEE Comput. Soc. Press , (1990). 0-8186-2083-8 Interactive visualization of quaternion Julia sets 209 218, , 10.1109/VISUAL.1990.146384 http://ieeexplore.ieee.org/document/146384/ 1990 IJCNN International Joint Conference on Neural Networks San Diego, CA, USA 1990 IJCNN International Joint Conference on Neural Networks IEEE , (1990). Generalization of neural networks to the complex plane , (1990). 435 440 vol.2 5726710 , 10.1109/IJCNN.1990.137751 http://ieeexplore.ieee.org/document/5726710/
  • , Complex universality, Communications in Mathematical Physics, 121, 2, (225), (1989).
  • , Fractals in microstructure of metals, International Materials Reviews, 34, 1, (277), (1989).
  • , Julia sets in the quaternions, Computers & Graphics, 13, 2, (267), (1989).
  • , A weak estimate of the fractal dimension of the Mandelbrot boundary, Physics Letters A, 136, 7-8, (358), (1989).
  • , Nonlinear dynamics in a complex cubic one-dimensional model for sensory psychophysics, Acta Applicandae Mathematicae, 11, 1, (1), (1988).
  • , Dynamics of quadratic correspondences, Nonlinearity, 1, 1, (27), (1988).
  • , Newton's method and complex dynamical systems, Acta Applicandae Mathematicae, 13, 1-2, (3), (1988).
  • , Geometric Universality in Brain Allosteric Protein Dynamics:, Annals of the New York Academy of Sciences, 504, 1, (88-117), (2006).
  • , Extraneous fixed points, basin boundaries and chaotic dynamics for Schr�der and K�nig rational iteration functions, Numerische Mathematik, 52, 1, (1), (1987).
  • , Scaling structure and thermodynamics of strange sets, Physical Review A, 36, 3, (1409), (1987).
  • , Islands of stability and complex universality relations, Journal of Mathematical Physics, 28, 1, (60), (1987).
  • , Mandelbrot sets for pairs of affine transformations in the plane, Journal of Physics A: Mathematical and General, 19, 11, (1985), (1986).
  • , DISCONNECTED JULIA SETS, Chaotic Dynamics and Fractals, 10.1016/B978-0-12-079060-9.50016-3, (181-201), (1986).
  • , MAKING CHAOTIC DYNAMICAL SYSTEMS TO ORDER, Chaotic Dynamics and Fractals, 10.1016/B978-0-12-079060-9.50008-4, (53-68), (1986).
  • , DIOPHANTINE PROPERTIES OF JULIA SETS, Chaotic Dynamics and Fractals, 10.1016/B978-0-12-079060-9.50018-7, (215-227), (1986).
  • , CIRCLE MAPS IN THE COMPLEX PLANE, Fractals in Physics, 10.1016/B978-0-444-86995-1.50081-0, (439-445), (1986).
  • , Frontiers of chaos, Physica D: Nonlinear Phenomena, 19, 2, (307), (1986).
  • , Basin-structure invariance of circle maps with bistable dynamics, Physical Review A, 33, 3, (2143), (1986).
  • , Morphology of Complex Boundaries, Berichte der Bunsengesellschaft für physikalische Chemie, 89, 6, (571-588), (2010).
  • , A mandelbrot set for pairs of linear maps, Physica D: Nonlinear Phenomena, 15, 3, (421), (1985).
  • , The mandelbrot set in a model for phase transitions, Arbeitstagung Bonn 1984, 10.1007/BFb0084587, (111-135), (2006).
  • , Renormalization, unstable manifolds, and the fractal structure of mode locking, Physical Review Letters, 55, 4, (343), (1985).
  • , Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Inventiones Mathematicae, 80, 1, (161), (1985).
  • , A rescaling approach to two- and three-dimensional lattice spectra, Journal of Physics A: Mathematical and General, 18, 3, (525), (1985).
  • , Fractal basin boundaries, Physica D: Nonlinear Phenomena, 10.1016/0167-2789(85)90001-6, 17, 2, (125-153), (1985).
  • , Strange Attractors in Fluid Dynamics, Advances in Applied Mechanics Volume 24, 10.1016/S0065-2156(08)70045-0, (189-214), (1984).
  • , Bursts into chaos, Physics Letters A, 104, 8, (385), (1984).
  • , Meblin transforms associated with Julia sets and physical applications, Journal of Statistical Physics, 34, 1-2, (75), (1984).
  • , a.c. response of fractal networks, Journal de Physique Lettres, 45, 19, (913), (1984).
  • , Strange objects in the complex plane, Journal of Statistical Physics, 32, 3, (443), (1983).
  • , On the invariant sets of a family of quadratic maps, Communications in Mathematical Physics, 88, 4, (479), (1983).
  • , Chaotic scaling trajectories and hierarchical lattice models of disordered binary harmonic chains, Physical Review B, 28, 1, (218), (1983).
  • , Scaling and density of states of fractal lattices from a generating function point of view, Journal de Physique Lettres, 44, 20, (843), (1983).
  • , Universal scaling behaviour for iterated maps in the complex plane, Communications in Mathematical Physics, 89, 4, (555), (1983).
  • , Universality for period n-tuplings in complex mappings, Physics Letters A, 94, 8, (329), (1983).
  • , Repellers for real analytic maps, Ergodic Theory and Dynamical Systems, 2, 01, (99), (1982).