Animal and human studies with the mitochondria-targeted antioxidant MitoQ
Robin A.J. Smith
Department of Chemistry, University of Otago, Dunedin, New Zealand
Search for more papers by this authorMichael P. Murphy
MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge, United Kingdom
Search for more papers by this authorRobin A.J. Smith
Department of Chemistry, University of Otago, Dunedin, New Zealand
Search for more papers by this authorMichael P. Murphy
MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge, United Kingdom
Search for more papers by this authorAbstract
As mitochondrial oxidative damage contributes to a wide range of human diseases, antioxidants designed to be accumulated by mitochondria in vivo have been developed. The most extensively studied of these mitochondria-targeted antioxidants is MitoQ, which contains the antioxidant quinone moiety covalently attached to a lipophilic triphenylphosphonium cation. MitoQ has now been used in a range of in vivo studies in rats and mice and in two phase II human trials. Here, we review what has been learned from these animal and human studies with MitoQ.
References
- 1 Balaban, R.S., S. Nemoto & T. Finkel. 2005. Mitochondria, oxidants, and aging. Cell 120: 483–495.
- 2 Murphy, M.P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417: 1–13.
- 3 Murphy, M.P. & R.A.J. Smith. 2000. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv. Drug Deliv. Revs. 41: 235–250.
- 4 Smith, R.A.J. et al . 1999. Targeting an antioxidant to mitochondria. Eur. J. Biochem. 263: 709–716.
- 5 Murphy, M.P. & R.A. Smith. 2007. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47: 629–656.
- 6 Szeto, H.H. 2008. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antiox. Redox Signal. 10: 601–619.
- 7 Skulachev, V.P. et al . 2009. An attempt to prevent senescence: A mitochondrial approach. Biochim. Biophys. Acta 1787: 437–461.
- 8 Kelso, G.F. et al . 2001. Selective targeting of a redox-active quinone to mitochondria within cells. J. Biol. Chem. 276: 4588–4596.
- 9 Smith, R.A.J. et al . 2003. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 100: 5407–5412.
- 10 Ross, M.F. et al . 2005. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 70: 222–230.
- 11 Liberman, E.A. & V.P. Skulachev. 1970. Conversion of biomembrane-produced energy into electric form. Part IV. General discussion. Biochim. Biophys. Acta 216: 30–42.
- 12 James, A.M. et al . 2007. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and quinone oxidoreductases. J. Biol. Chem. 282: 14708–14718.
- 13 James, A.M., H.M. Cocheme & M.P. Murphy. 2005. Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mech. Ageing Dev. 126: 982–986.
- 14 Asin-Cayuela, J. et al . 2004. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett. 571: 9–16.
- 15 Maroz, A. et al . 2009. Reactivity of quinone and quinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. Free Radic. Biol. Med. 46: 105–109.
- 16 Ross, M.F. et al . 2008. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem. J. 411: 633–645.
- 17 Jauslin, M.L. et al . 2003. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 17: 1972–1974.
- 18 Rodriguez-Cuenca, S. et al . 2009. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Rad. Biol. Med. 48: 161–172.
- 19 Li, Y. et al . 2007. Quantitation and metabolism of mitoquinone, a mitochondria-targeted antioxidant, in rat by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21: 1958–1964.
- 20 Adlam, V.J. et al . 2005. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 19: 1088–1095.
- 21 Graham, D. et al . 2009. The mitochondria targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54: 322–328.
- 22 Paradies, G. et al . 2009. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45: 643–650.
- 23 Levine, R.L. et al . 1994. Carbonyl assays for determination of oxidatively damaged proteins. Meth. Enzymol. 233: 346–357.
- 24 Davies, S.M. et al . 2001. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic. Biol. Med. 31: 181–190.
- 25 Santos, J.H. et al . 2006. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Meth. Mol. Biol. 314: 183–199.
- 26 Larrea, E. et al . 1998. Superoxide dismutase in patients with chronic hepatitis C virus infection. Free Radic. Biol. Med. 24: 1235–1241.
- 27 Hu, Y. et al . 2005. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J. Biol. Chem. 280: 39485–39492.
- 28 James, A.M., R.A. Smith & M.P. Murphy. 2004. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem. Biophys. 423: 47–56.
- 29 James, A.M. et al . 2005. Interactions of mitochondria-targeted and untargeted quinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous quinones as therapies and experimental tools. J. Biol. Chem. 280: 21295–21312.
- 30 King, M.S., M.S. Sharpley & J. Hirst. 2009. Reduction of hydrophilic quinones by the flavin in mitochondrial NADH:quinone oxidoreductase (Complex I) and production of reactive oxygen species. Biochemistry 48: 2053–2062.
- 31 Doughan, A.K. & S.I. Dikalov. 2007. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid. Redox Signal. 9: 1825–1836.
- 32 O’Malley, Y. et al . 2006. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J. Biol. Chem. 281: 39766–39775.
- 33 Echtay, K.S. et al . 2002. Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side. Studies using targeted antioxidants. J. Biol. Chem. 277: 47129–47135.
- 34 Chandran, K. et al . 2009. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys. J. 96: 1388–1398.
- 35 Esplugues, J.V. et al . 2006. Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ. Res. 99: 1067–1075.
- 36 Lowes, D.A. et al . 2008. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic. Biol. Med. 45: 1559–1565.
- 37 Neuzil, J. et al . 2007. Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Redox Rep. 12: 148–162.
- 38 Supinski, G.S., M.P. Murphy & L.A. Callahan. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297: R1095–R1102.
- 39 Singer, M. 2007. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit. Care Med. 35: S441–S448.
- 40 Brealey, D. et al . 2004. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286: R491–R497.
- 41 Chandran, K. et al . 2008. Neuroprotective effects of mitochondria-targeted antioxidants against MPTP-induced oxidative damage in mitochondrial aconitase in a preclinical animal model of Parkinson's disease. Neuroscience 2008, the Society for Neuroscience's 38th Annual Meeting. Washington , DC , USA .
- 42 Snow, B.J. et al . 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant mitoQ as a disease modifying therapy in Parkinson's disease. Movement Disord. In press. doi: 10.1002/mds.23148.
- 43 Gane, E.J. et al . 2010. The mitochondria-targeted antioxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30: 1019–1026.