Music listening after stroke: beneficial effects and potential neural mechanisms
Teppo Särkämö
Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.
Finnish Centre of Excellence in Interdisciplinary Music Research, University of Jyväskylä, Jyväskylä, Finland.
Search for more papers by this authorDavid Soto
Department of Medicine, Centre for Neuroscience, Imperial College London, London, United Kingdom
Search for more papers by this authorTeppo Särkämö
Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.
Finnish Centre of Excellence in Interdisciplinary Music Research, University of Jyväskylä, Jyväskylä, Finland.
Search for more papers by this authorDavid Soto
Department of Medicine, Centre for Neuroscience, Imperial College London, London, United Kingdom
Search for more papers by this authorAbstract
Music is an enjoyable leisure activity that also engages many emotional, cognitive, and motor processes in the brain. Here, we will first review previous literature on the emotional and cognitive effects of music listening in healthy persons and various clinical groups. Then we will present findings about the short- and long-term effects of music listening on the recovery of cognitive function in stroke patients and the underlying neural mechanisms of these music effects. First, our results indicate that listening to pleasant music can have a short-term facilitating effect on visual awareness in patients with visual neglect, which is associated with functional coupling between emotional and attentional brain regions. Second, daily music listening can improve auditory and verbal memory, focused attention, and mood as well as induce structural gray matter changes in the early poststroke stage. The psychological and neural mechanisms potentially underlying the rehabilitating effect of music after stroke are discussed.
References
- 1
Sacks, O.
2006. The power of music.
Brain
129: 2528–2532.
- 2
Trainor, L.
2008. Science & music: the neural roots of music.
Nature
453: 598–599.
- 3
Zatorre, R.J.
2005. Music, the food of neuroscience?
Nature
434: 312–315.
- 4
Merriam, A.P.
1964. The Anthropology of Music. Northwestern University Press.
Evanston
.
- 5
Nettl, B.
2000. An ethnomusicologist contemplates universals in musical sound and musical culture. In
The Origins of Music. N.L. Wallin,
B. Merker &
S. Brown, Eds.: 463–472. MIT Press.
Cambridge
.
- 6
Trehub, S.E.
2003. The developmental origins of musicality.
Nat. Neurosci.
6: 669–673.
- 7
Juslin, P.N. &
P. Laukka. 2004. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening.
J. New Music Res.
33: 217–228.
- 8
Saarikallio, S.
2011. Music as emotional self-regulation throughout adulthood.
Psychol. Music
39: 307–327.
- 9
Sloboda, J. &
S. O’Neill. 2001. Emotions in everyday listening to music. In
Music and Emotion: Theory and Research. P. Juslin &
J. Sloboda, Eds.: 415–429. Oxford University Press.
Oxford
.
- 10
Saarikallio, S. &
J. Erkkilä. 2007. The role of music in adolescents mood regulation.
Psychol. Music
35: 88–109.
- 11
Cohen, A.,
B. Bailey &
T. Nilsson. 2002. The importance of music to seniors.
Psychomusicology
18: 89–102.
- 12
Hays, T. &
V. Minichiello. 2005. The meaning of music in the lives of older people: a qualitative study.
Psychol. Music
33: 437–451.
- 13
Zentner, M.,
D. Grandjean &
K.R. Scherer. 2008. Emotions evoked by the sound of music: characterization, classification, and measurement.
Emotion
8: 494–521.
- 14
Fukui, H. &
M. Yamashita. 2003. The effects of music and visual stress on testosterone and cortisol in men and women.
Neuroendocrinol. Lett.
24: 173–180.
- 15
Khalfa, S.,
S. Dalla Bella,
M. Roy,
et al
. 2003. Effects of relaxing music on salivary cortisol level after psychological stress.
Ann. N.Y. Acad. Sci.
999: 374–376.
- 16
Krumhansl, C.L.
1997. An exploratory study of musical emotions and psychophysiology.
Can. J. Exp. Psychol.
51: 336–352.
- 17
Lundqvist, L.O.,
F. Carlsson,
P. Hilmersson,
et al
. 2009. Emotional responses to music: experience, expression, and physiology.
Psychol. Music
37: 61–90.
- 18
Suda, M.,
K. Morimoto,
A. Obata,
et al
. 2008. Emotional responses to music: towards scientific perspectives on music therapy.
NeuroReport
19: 75–78.
- 19
Thompson, W.F.,
E.G. Schellenberg &
G. Husain. 2001. Arousal, mood, and the Mozart effect.
Psychol. Sci.
12: 248–251.
- 20
Clark, D.M. &
J.D. Teasdale. 1985. Constraints on the effect of mood on memory.
J. Pers. Soc. Psychol.
48: 1595–1608.
- 21
Escoffier, N.,
D.Y. Sheng &
A. Schirmer. 2010. Unattended musical beats enhance visual processing.
Acta. Psychol.
135: 12–16.
- 22
Schellenberg, E.G.,
T. Nakata,
P.G. Hunter,
et al
. 2007. Exposure to music and cognitive performance: tests of children and adults.
Psychol. Music
35: 5–19.
- 23
Wood, J.V.,
J.A. Saltzberg &
L.A. Goldsamt. 1990. Does affect induce self-focused attention?
J. Pers. Soc. Psychol.
58: 899–908.
- 24
Chabris, C.F.
1999. Prelude or requiem for the “Mozart effect”?
Nature
400: 826–827.
- 25
Rauscher, F.H.,
G.L. Shaw &
K.N. Ky. 1993. Music and spatial task performance.
Nature
365: 611.
- 26
Rowe, G.,
J.B. Hirsh &
A.K. Anderson. 2007. Positive affect increases the breadth of attentional selection.
P. Natl. Acad. Sci. USA
104: 383–388.
- 27
Beh, H.C. &
R. Hirst. 1999. Performance on driving-related tasks during music.
Ergonomics
42: 1087–1098.
- 28
Greene, C.M.,
P. Bahri &
D. Soto. 2010. Interplay between affect and arousal in recognition memory.
PLoS One
5: e11739.
- 29
Hallam, S.,
J. Price &
G. Katsarou. 2002. The effects of background music on primary school pupils’ task performance.
Educ. Stud.
28: 111–122.
- 30
Mammarella, N.,
B. Fairfield &
C. Cornoldi. 2007. Does music enhance cognitive performance in healthy older adults? The Vivaldi effect.
Aging Clin. Exp. Res.
19: 394–399.
- 31
Thompson, R.G.,
C.J. Moulin,
S. Hayre,
et al
. 2005. Music enhances category fluency in healthy older adults and Alzheimer's disease patients.
Exp. Aging Res.
31: 91–99.
- 32
Schön, D.,
M. Boyer,
S. Moreno,
et al
. 2008. Songs as an aid for language acquisition.
Cognition
106: 975–983.
- 33
Wallace, W.T.
1994. Memory for music: effect of melody on recall of text.
J. Exp. Psychol. Learn.
20: 1471–1485.
- 34
Racette, A. &
I. Peretz. 2007. Learning lyrics: to sing or not to sing
Mem. Cognition
35: 242–253.
- 35
Boyle, R. &
V. Coltheart. 1996. Effects of irrelevant sounds on phonological coding in reading comprehension and short-term memory.
Q. J. Exp. Psychol. A.
49: 398–416.
- 36
Jäncke, L. &
P. Sandmann. 2009. Music listening while you learn: no influence of background music on verbal learning.
Behav. Brain Func.
6: 1–14.
- 37
Salamé, P. &
A. Baddeley. 1989. Effects of background music on phonological short-term memory.
Q. J. Exp. Psychol-A.
41: 107–122.
- 38
Engineer, N.D.,
C.R. Percaccio,
P.K. Pandya,
et al
. 2004. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons.
J. Neurophysiol.
92: 73–82.
- 39
Percaccio, C.R.,
N.D. Engineer,
A.L. Pruette,
et al
. 2005. Environmental enrichment increases paired-pulse depression in rat auditory cortex.
J. Neurophysiol.
94: 3590–3600.
- 40
Xu, F.,
R. Cai,
J. Xu,
et al
. 2007. Early music exposure modifies GluR2 protein expression in rat auditory cortex and anterior cingulate cortex.
Neurosci. Lett.
420: 171–183.
- 41
Xu, J.,
L. Yu,
R. Cai,
et al
. 2009. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.
Behav. Brain Res.
196: 49–54.
- 42
Angelucci, F.,
M. Fiore,
E. Ricci,
et al
. 2007. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.
Behav. Pharmacol.
18: 491–496.
- 43
Chikahisa, S.,
H. Sei,
M. Morishima,
et al
. 2006. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults.
Behav. Brain Res.
169: 312–319.
- 44
Kim, H.,
M.H. Lee,
H.K. Chang,
et al
. 2006. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.
Brain Dev.
28: 109–114.
- 45
McDermott, J. &
M. Hauser. 2005. The origins of music: innateness, uniqueness, and evolution.
Music Percept.
23: 29–59.
- 46
Rickard, N.S.,
S.R. Toukhsati &
S.E. Field. 2005. The effect of music on cognitive performance: insight from neurobiological and animal studies.
Behav. Cogn. Neurosci. Rev.
4: 235–261.
- 47
Ashby, F.G.,
A.M. Isen &
A.U. Turken. 1999. A neuropsychological theory of positive affect and its influence on cognition.
Psychol. Rev.
106: 529–550.
- 48
Isen, A.M.
1985. Asymmetry of happiness and sadness in effects on memory in normal college students: comment on Hasher, Rose, Zacks, Sanft, and Doren.
J. Exp. Psychol. Gen.
114: 388–391.
- 49
Isen, A.M.,
K.A. Daubman &
G.P. Nowicki. 1987. Positive affect facilitates creative problem solving.
J. Pers. Soc. Psychol.
52: 1122–1131.
- 50
Abikoff, H.,
M.E. Courtney,
P.J. Szeibel,
et al
. 1996. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.
J. Learn. Disabil.
29: 238–246.
- 51
Foster, N.A. &
E.R. Valentine. 2001. The effect of auditory stimulation on autobiographical recall in dementia.
Exp. Aging Res.
27: 215–228.
- 52
Irish, M.,
C.J. Cunningham,
J.B. Walsh,
et al
. 2006. Investigating the enhancing effect of music on autobiographical memory in mild Alzheimer's disease.
Dement. Geriatr. Cogn.
22: 108–120.
- 53
Hommel, M.,
B. Peres,
P. Pollak,
et al
. 1990. Effects of passive tactile and auditory stimuli on left visual neglect.
Arch. Neurol.
47: 573–576.
- 54
Robertson, I.H.,
J.B. Mattingley,
C. Rorden,
et al
. 1998. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness.
Nature
395: 169–172.
- 55
Thaut, M.H.,
D.A. Peterson &
G.C. McIntosh. 2005. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.
Ann. N.Y. Acad. Sci.
1060: 243–254.
- 56
Simmons-Stern, N.R.,
A.E. Budson &
B.A. Ally. 2010. Music as a memory enhancer in patients with Alzheimer's disease.
Neuropsychologia
48: 3164–3167.
- 57
Straube, T.,
A. Schulz,
K. Geipel,
et al
. 2008. Dissociation between singing and speaking in expressive aphasia: the role of song familiarity.
Neuropsychologia
46: 1505–1512.
- 58
Racette, A.,
C. Bard &
I. Peretz. 2006. Making non-fluent aphasics speak: sing along!
Brain
129: 2571–2584.
- 59
Patterson, R.D.,
S. Uppenkamp,
I. Johnsrude,
et al
. 2002. The processing of temporal pitch and melody information in auditory cortex.
Neuron
36: 767–776.
- 60
Brown, S. &
M.J. Martinez. 2007. Activation of premotor vocal areas during musical discrimination.
Brain Cogn.
63: 59–69.
- 61
Zatorre, R.J.,
A.C. Evans &
E. Meyer. 1994. Neural mechanisms underlying melodic perception and memory for pitch.
J. Neurosci.
14: 1908–1919.
- 62
Hyde, K.L.,
I. Peretz &
R.J. Zatorre. 2008. Evidence for the role of the right auditory cortex in fine pitch resolution.
Neuropsychologia
46: 632–639.
- 63
Schönwiesner, M.,
R. Rübsamen &
D.Y. von Cramon. 2005. Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex.
Eur. J. Neurosci.
22: 1521–1528.
- 64
Zatorre, R.J. &
P. Belin. 2001. Spectral and temporal processing in human auditory cortex.
Cereb. Cortex
11: 946–953.
- 65
Belin, P.,
R.J. Zatorre,
P. Lafaille,
et al
. 2000. Voice-selective areas in human auditory cortex.
Nature
403: 309–312.
- 66
Warren, J.D.,
A.R. Jennings &
T.D. Griffiths. 2005. Analysis of the spectral envelope of sounds by the human brain.
Neuroimage
24: 1052–1057.
- 67
Hyde, K.L.,
R.J. Zatorre,
T.D. Griffiths,
et al
. 2006. Morphometry of the amusic brain: a two-site study.
Brain
129: 2562–2570.
- 68
Hyde, K.L.,
J.P. Lerch,
R.J. Zatorre,
et al
. 2007. Cortical thickness in congenital amusia: when less is better than more.
J. Neurosci.
27: 13028–13032.
- 69
Johnsrude, I.S.,
V.B. Penhune &
R.J. Zatorre. 2000. Functional specificity in the right human auditory cortex for perceiving pitch direction.
Brain
123: 155–163.
- 70
Liégeois-Chauvel, C.,
I. Peretz,
M. Babaï,
et al
. 1998. Contribution of different cortical areas in the temporal lobes to music processing.
Brain
121: 1853–1867.
- 71
Milner, B.A.
1962. Laterality effects in audition. In
Interhemispheric Relations and Cerebral Dominance. V.B. Mountcastle, Ed.: 177–195. Johns Hopkins Press.
Baltimore
.
- 72
Peretz, I.
1990. Processing of local and global musical information by unilateral brain-damaged patients.
Brain
113: 1185–1205.
- 73
Samson, S. &
R.J. Zatorre. 1988. Melodic and harmonic discrimination following unilateral cerebral excision.
Brain Cogn.
7: 348–360.
- 74
Stewart, L.,
K. von Kriegstein,
J.D. Warren,
et al
. 2006. Music and the brain: disorders of musical listening.
Brain
129: 2533–2553.
- 75
Robin, D.A.,
D. Tranel &
H. Damasio. 1990. Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions.
Brain Lang.
39: 539–555.
- 76
Schuppert, M.,
T.F. Münte,
B.M. Wieringa,
et al
. 2000. Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies.
Brain
123: 546–559.
- 77
Shapiro, B.E.,
M. Grossman &
H. Gardner. 1981. Selective musical processing deficits in brain damaged populations.
Neuropsychologia
19: 161–169.
- 78
Tervaniemi, M.
2001. Musical sound processing in the human brain. Evidence from electric and magnetic recordings.
Ann. N.Y. Acad. Sci.
930: 259–272.
- 79
Janata, P.,
J.L. Birk,
J.D. Van Horn,
et al
. 2002. The cortical topography of tonal structures underlying Western music.
Science
298: 2167–2170.
- 80
Koelsch, S.,
T. Fritz,
K. Schulze,
et al
. 2005. Adults and children processing music: an fMRI study.
Neuroimage
25: 1068–1076.
- 81
Levitin, D.J. &
V. Menon. 2003. Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence.
Neuroimage
20: 2142–2152.
- 82
Maess, B.,
S. Koelsch,
T.C. Gunter,
et al
. 2001. Musical syntax is processed in Broca's area: an MEG study.
Nat. Neurosci.
4: 540–545.
- 83
Tillmann, B.,
P. Janata &
J.J. Bharucha. 2003. Activation of the inferior frontal cortex in musical priming.
Cogn. Brain Res.
16: 145–161.
- 84
Koelsch, S. &
W.A. Siebel. 2005. Towards a neural basis of music perception.
Trends Cogn. Sci.
9: 578–584.
- 85
Gaab, N.,
C. Gaser,
T. Zaehle,
et al
. 2003. Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling.
Neuroimage
19: 1417–1426.
- 86
Griffiths, T.D.,
I. Johnsrude,
J.L. Dean,
et al
. 1999. A common neural substrate for the analysis of pitch and duration pattern in segmented sound?
Neuroreport
10: 3825–3830.
- 87
Janata, P.,
B. Tillmann &
J.J. Bharucha. 2002. Listening to polyphonic music recruits domain-general attention and working memory circuits.
Cogn. Affect. Behav. Neurosci.
2: 121–140.
- 88
Groussard, M.,
F. Viader,
V. Hubert,
et al
. 2010. Musical and verbal semantic memory: two distinct neural networks?
NeuroImage
49: 2764–2773.
- 89
Janata, P.
2009. The neural architecture of music-evoked autobiographical memories.
Cereb. Cortex
19: 2579–2594.
- 90
Peretz, I.,
N. Gosselin,
P. Belin,
et al
. 2009. Music lexical networks. The cortical organization of music recognition.
Ann. N.Y. Acad. Sci.
1169: 256–265.
- 91
Plailly, J.,
B. Tillmann &
J.P. Royet. 2007. The feeling of familiarity of music and odors: the same neural signature?
Cereb. Cortex
17: 2650–2658.
- 92
Platel, H.,
J.C. Baron,
B. Desgranges,
et al
. 2003. Semantic and episodic memory of music are subserved by distinct neural networks.
Neuroimage
20: 244–256.
- 93
Satoh, M.,
K. Takeda,
K. Nagata,
et al
. 2006. Positron-emission tomography of brain regions activated by recognition of familiar music.
Am. J. Neuroradiol.
27: 1101–1106.
- 94
Ayotte, J.,
I. Peretz,
I. Rousseau,
et al
. 2000. Patterns of music agnosia associated with middle cerebral artery infarcts.
Brain
123: 1926–1938.
- 95
Baumgartner, T.,
M. Esslen &
L. Jäncke. 2006. From emotion perception to emotion experience: emotions evoked by pictures and classical music.
Int. J. Psychophysiol. 60: 34–43.
- 96
Blood, A.J.,
R.J. Zatorre,
P. Bermudez,
et al
. 1999. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions.
Nat. Neurosci.
2: 382–387.
- 97
Blood, A.J. &
R.J. Zatorre
2001. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion.
P. Natl. Acad. Sci. USA
98: 11818–11823.
- 98
Brown, S.,
M.J. Martinez &
L.M. Parsons. 2004. Passive music listening spontaneously engages limbic and paralimbic systems.
Neuroreport
15: 2033–2037.
- 99
Koelsch, S.,
T. Fritz,
D.Y. von Cramon,
et al
. 2006. Investigating emotion with music: an fMRI study.
Hum. Brain Mapp.
27: 239–250.
- 100
Menon, V. &
D.J. Levitin. 2005. The rewards of music listening: response and physiological connectivity of the mesolimbic system.
Neuroimage
28: 175–184.
- 101
Mitterschiffthaler, M.T.,
C.H. Fu,
J.A. Dalton,
et al
. 2007. A functional MRI study of happy and sad affective states evoked by classical music.
Hum. Brain Mapp.
28: 1150–1162.
- 102
Koelsch, S.
2010. Towards a neural basis of music-evoked emotions.
Trends Cogn. Sci.
14: 131–137.
- 103
Gosselin, N.,
S. Samson,
R. Adolphs,
et al
. 2006. Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex.
Brain
129: 2585–2592.
- 104
Griffiths, T.D.,
J.D. Warren,
J.L. Dean,
et al
. 2004. “When the feeling's gone”: a selective loss of musical emotion.
J. Neurol. Neurosur. Ps.
75: 344–345.
- 105
Grahn, J.A. &
M. Brett. 2007. Rhythm and beat perception in motor areas of the brain.
J. Cogn. Neurosci.
19: 893–906.
- 106
Popescu, M.,
A. Otsuka &
A.A. Ioannides. 2004. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.
Neuroimage
21: 1622–1638.
- 107
Rao, S.M.,
A.R. Mayer &
D.L. Harrington. 2001. The evolution of brain activation during temporal processing.
Nat. Neurosci.
4: 317–323.
- 108
Thaut, M.H.,
G.C. McIntosh &
R.R. Rice. 1997. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation.
J. Neurol. Sci.
151: 207–212.
- 109
Thaut, M.H.,
G.P. Kenyon,
C.P. Hurt,
et al
. 2002. Kinematic optimization of spatiotemporal patterns in paretic arm training with stroke patients.
Neuropsychologia
40: 1073–1081.
- 110
Thaut, M.H.,
A.K. Leins,
R.R. Rice,
et al
. 2007. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.
Neurorehab. Neural Re.
21: 455–459.
- 111
Jeong, S. &
M.T. Kim. 2007. Effects of a theory-driven music and movement program for stroke survivors in a community setting.
Appl. Nurs. Res.
20: 125–131.
- 112
Schauer, M. &
K.H. Mauritz. 2003. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.
Clin. Rehabil.
17: 713–722.
- 113
Altenmüller, E.,
J. Marco-Pallares,
T.F. Münte,
et al
. 2009. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy.
Ann. N.Y. Acad. Sci.
1169: 395–405.
- 114
Schneider, S.,
P.W. Schönle,
E. Altenmüller,
et al
. 2007. Using musical instruments to improve motor skill recovery following a stroke.
J. Neurol.
254: 1339–1346.
- 115
Schneider, S.,
T. Münte,
A. Rodriguez-Fornells,
et al
. 2010. Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients.
Music Percept.
27: 271–280.
- 116
Albert, M.L.,
R.W. Sparks &
N.A. Helm. 1973. Melodic intonation therapy for aphasia.
Arch. Neurol.
29: 130–131.
- 117
Norton, A.,
L. Zipse,
S. Marchina,
et al
. 2009. Melodic intonation therapy: shared insights on how it is done and why it might help.
Ann. N.Y. Acad. Sci.
1169: 431–436.
- 118
Sparks, R.,
N. Helm &
M. Albert. 1974. Aphasia rehabilitation resulting from melodic intonation therapy.
Cortex
10: 303–316.
- 119
Wilson, S.J.,
K. Parsons &
D.C. Reutens. 2006. Preserved singing in aphasia: a case study of the efficacy of the Melodic Intonation Therapy.
Music Percept.
24: 23–36.
- 120
Schlaug, G.,
S. Marchina &
A. Norton. 2008. From singing to speaking: why singing may lead to recovery of expressive language function in patients with Broca's aphasia.
Music Percept.
25: 315–323.
- 121
Schlaug, G.,
S. Marchina &
A. Norton. 2009. Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy.
Ann. N.Y. Acad. Sci.
1169: 385–394.
- 122
Magee, W.L. &
J.W. Davidson. 2002. The effect of music therapy on mood states in neurological patients: a pilot study.
J. Music Ther.
39: 20–29.
- 123
Nayak, S.,
B.L. Wheeler,
S.C. Shiflett,
et al
. 2000. Effect of music therapy on mood and social interaction among individuals with acute traumatic brain injury and stroke.
Rehabil. Psychol.
45: 274–283.
- 124
Karnath, H.O.
1988. Deficits of attention in acute and recovered visual hemi-neglect.
Neuropsychologia
26: 27–43.
- 125
Driver, J. &
P. Vuilleumier. 2001. Perceptual awareness and its loss in unilateral neglect and extinction.
Cognition
79: 39–88
- 126
Singh-Curry, V. &
M. Husain. 2010. Rehabilitation in practice: hemispatial neglect: approaches to rehabilitation.
Clin. Rehabil.
24: 675–684.
- 127
Soto, D.,
M.J. Funes,
A. Guzmán-García,
et al
. 2009. Pleasant music overcomes the loss of awareness in patients with visual neglect.
P. Natl. Acad. Sci. USA
106: 6011–6016.
- 128
Särkämö, T.,
M. Tervaniemi,
S. Laitinen,
et al
. 2008. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke.
Brain
131: 866–876.
- 129
Särkämö, T.,
E. Pihko,
S. Laitinen,
et al
. 2010. Music and speech listening enhance the recovery of early sensory processing after stroke.
J. Cogn. Neurosci.
22: 2716–2727.
- 130
Särkämö, T.
2011. Music in The Recovering Brain. Doctoral dissertation.
University of Helsinki
,
Finland
. URL
https://helda.helsinki.fi/handle/10138/24940 [Accessed on 9 January 2012].
- 131
Forsblom, A.,
T. Särkämö,
S. Laitinen,
et al
. 2010. The effect of music and audiobook listening on people recovering from stroke: the patient's point of view.
Music Med.
2: 229–234.
- 132
Forsblom, A.,
S. Laitinen,
T. Särkämö,
et al
. 2009. Therapeutic role of music listening in stroke rehabilitation.
Ann. N.Y. Acad. Sci.
1169: 426–430.
- 133
Näätänen, R.,
P. Paavilainen,
T. Rinne,
et al
. 2007. The mismatch negativity (MMN) in basic research of central auditory processing: a review.
Clin. Neurophysiol.
118: 2544–2590.
- 134
Ashburner, J.
2009. Computational anatomy with the SPM software.
Magn. Reson. Imaging
27: 1163–1174.
- 135
Brett, M.,
A.P. Leff,
C. Rorden,
et al
. 2001. Spatial normalization of brain images with focal lesions using cost function masking.
NeuroImage
14: 486–500.
- 136
Omar, R.,
S.M. Henley,
J.W. Bartlett,
et al
. 2011. The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration.
Neuroimage
56: 1814–1821.
- 137
James, C.E.,
J. Britz,
P. Vuilleumier,
et al
. 2008. Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts.
Neuroimage
42: 1597–1608.
- 138
Mutschler, I.,
B. Wieckhorst,
S. Kowalevski,
et al
. 2009. Functional organization of the human anterior insular cortex.
Neurosci. Lett.
457: 66–70.
- 139
Salimpoor, V.N.,
M. Benovoy,
K. Larcher,
et al
. 2011. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music.
Nat. Neurosci.
14: 257–262.
- 140
Sutoo, D. &
K. Akiyama. 2004. Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation.
Brain Res.
1016: 255–262.
- 141
Feduccia, A.A. &
C.L. Duvauchelle. 2008. Auditory stimuli enhance MDMA-conditioned reward and MDMA-induced nucleus accumbens dopamine, serotonin and locomotor responses.
Brain Res. Bull.
77: 189–196.
- 142
Nieoullon, A.
2002. Dopamine and the regulation of cognition and attention.
Prog. Neurobiol.
67: 53–83.
- 143
Knab, A.M. &
J.T. Lightfoot. 2010. Does the difference between physically active and couch potato lie in the dopamine system?
Int. J. Biol. Sci.
6: 133–150.
- 144
Mehta, M.A. &
W.J. Riedel. 2006. Dopaminergic enhancement of cognitive function.
Curr. Pharm. Design
12: 2487–2500.
- 145
Bales, J.W.,
A.K. Wagner,
A.E. Kline,
et al
. 2009. Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis.
Neurosci. Biobehav. R.
33: 981–1003.
- 146
Panksepp, J. &
G. Bernatzky. 2002. Emotional sounds and the brain: the neuro-affective foundations of musical appreciation.
Behav. Process.
60: 133–155.
- 147
Smith, A. &
D. Nutt. 1996. Noradrenaline and attention lapses.
Nature
380: 291.
- 148
Franowicz, J.S. &
A.F. Arnsten, 1998. The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys.
Psychopharmacology
136: 8–14.
- 149
Jäkälä, P.,
M. Riekkinen,
J. Sirviö,
et al
. 1999. Guanfacine, but not clonidine, improves planning and working memory performance in humans.
Neuropsychopharmacology
20: 460–470.
- 150
Malhotra, P.A.,
A.D. Parton,
R. Greenwood,
et al
. 2006. Noradrenergic modulation of space exploration in visual neglect.
Ann. Neurol.
59: 186–190.
- 151
Nys, G.M.,
M.J. van Zandvoort,
H.B. van der Worp,
et al
. 2006. Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke.
J. Neurol. Sci.
247: 149–156.
- 152
Rasquin, S.,
J. Lodder &
F. Verhey. 2005. The association between psychiatric and cognitive symptoms after stroke: a prospective study.
Cerebrovasc. Dis.
19: 309–316.
- 153
Åström, M.,
T. Olsson &
K. Asplund. 1993. Different linkage of depression to hypercortisolism early versus late after stroke. A 3-year longitudinal study.
Stroke
24: 52–57.
- 154
Franceschini, R.,
G.L. Tenconi,
F. Zoppoli,
et al
. 2001. Endocrine abnormalities and outcome of ischaemic stroke.
Biomed. Pharmacother.
55: 458–465.
- 155
Lee, B.K.,
T.A. Glass,
M.J. McAtee,
et al
. 2007. Associations of salivary cortisol with cognitive function in the Baltimore Memory Study.
Arch. Gen. Psychiat.
64: 810–818.
- 156
Radley, J.J. &
J.H. Morrison. 2005. Repeated stress and structural plasticity in the brain.
Ageing Res. Rev.
4: 271–287.
- 157
Kreutz, G.,
S. Bongard,
S. Rohrmann,
et al
. 2004. Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state.
J. Behav. Med.
27: 623–635.
- 158
Nilsson, U.
2009. The effect of music intervention in stress response to cardiac surgery in a randomized clinical trial.
Heart Lung
38: 201–207.
- 159
Schneider, N.,
M. Schedlowski,
T.H. Schürmeyer,
et al
. 2001. Stress reduction through music in patients undergoing cerebral angiography.
Neuroradiology
43: 472–476.
- 160
Cotman, C.W.,
D.T. Monaghan &
A.H. Ganong. 1988. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity.
Annu. Rev. Neurosci.
11: 61–80.
- 161
Javitt, D.C.,
M. Steinschneider,
C.E. Schroeder,
et al
. 1996. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia.
P. Natl. Acad. Sci. USA
93: 11962–11967.
- 162
Tikhonravov, D.,
T. Neuvonen,
A. Pertovaara,
et al
. 2008. Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats.
Brain Res.
1203: 97–102.
- 163
Korostenskaja, M.,
V.V. Nikulin,
D. Kičić,
et al
. 2007. Effects of NMDA receptor antagonist memantine on mismatch negativity.
Brain Res. Bull.
72: 275–283.
- 164
Umbricht, D.,
R. Koller,
F.X. Vollenweider,
et al
. 2002. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers.
Biol. Psychiat.
51: 400–406.
- 165
Ahveninen, J.,
I.P. Jääskeläinen,
E. Pekkonen,
et al
. 1999. Suppression of mismatch negativity by backward masking predicts impaired working-memory performance in alcoholics.
Alcohol. Clin. Exp. Res.
23: 1507–1514.
- 166
Baldeweg, T.,
A. Klugman,
J. Gruzelier,
et al
. 2004. Mismatch negativity potentials and cognitive impairment in schizophrenia.
Schizophr. Res.
69: 203–217.
- 167
Ilvonen, T.M.,
T. Kujala,
A. Kiesiläinen,
et al
. 2003. Auditory discrimination after left-hemisphere stroke: a mismatch negativity follow-up study.
Stroke
34: 1746–1751.
- 168
Kujala, T.,
K. Karma,
R. Ceponiene,
et al
. 2001. Plastic neural changes and reading improvement caused by audio-visual training in reading-impaired children.
P. Natl. Acad. Sci. USA
98: 10509–10514.
- 169
Mikkola, K.,
E. Kushnerenko,
E. Partanen,
et al
. 2007. Auditory event-related potentials and cognitive function of preterm children at five years of age.
Clin. Neurophysiol.
118: 1494–1502.
- 170
Toyomaki, A.,
I. Kusumi,
T. Matsuyama
et al
. 2008. Tone duration mismatch negativity deficits predict impairment of executive function in schizophrenia.
Prog. Neuropsychopharmacol. Biol. Psychiatry
32: 95–99.
- 171
Nichols, J.A.,
V.P. Jakkamsetti,
H. Salgado,
et al
. 2007. Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat.
Neuroscience
145: 832–840.
- 172
Bi, C.,
Y. Cui,
Y. Mao,
et al
. 2006. The effect of early auditory deprivation on the age-dependent expression pattern of NR2B mRNA in rat auditory cortex.
Brain Res.
1110: 30–38.
- 173
Keyvani, K. &
T. Schallert. 2002. Plasticity-associated molecular and structural events in the injured brain.
J. Neuropath. Exp. Neur.
61: 831–840.
- 174
Nithianantharajah, J. &
A.J. Hannan. 2006. Enriched environments, experience-dependent plasticity and disorders of the nervous system.
Nat. Rev. Neurosci.
7: 697–709.
- 175
Maegele, M.,
M. Lippert-Gruener,
T. Ester-Bode,
et al
. 2005. Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats.
Eur. J. Neurosci.
21: 2406–2418.
- 176
Maegele, M.,
M. Lippert-Gruener,
T. Ester-Bode,
et al
. 2005. Reversal of neuromotor and cognitive dysfunction in an enriched environment combined with multimodal early onset stimulation after traumatic brain injury in rats.
J. Neurotraum.
22: 772–782.
- 177
Bose, M.,
P. Muñoz-Llancao,
S. Roychowdhury,
et al
. 2010. Effect of the environment on the dendritic morphology of the rat auditory cortex.
Synapse
64: 97–110.
- 178
Angelucci, F.,
E. Ricci,
L. Padua,
et al
. 2007. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.
Neurosci. Lett.
429: 152–155.
- 179
Chaudhury, S. &
S. Wadhwa. 2009. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus.
Int. J. Dev. Neurosci.
27: 583–590.
- 180
Amunts, K.,
G. Schlaug,
L. Jäncke,
et al
. 1997. Motor cortex and hand motor skills: structural compliance in the human brain.
Hum. Brain Mapp.
5: 206–215.
- 181
Bengtsson, S.L.,
Z. Nagy,
S. Skare,
et al
. 2005. Extensive piano practicing has regionally specific effects on white matter development.
Nat. Neurosci.
8: 1148–1150.
- 182
Gaser, C. &
G. Schlaug. 2003. Brain structures differ between musicians and non-musicians.
J. Neurosci.
23: 9240–9245.
- 183
Hyde, K.L.,
J.P. Lerch,
A. Norton,
et al
. 2009. Musical training shapes structural brain development.
J. Neurosci.
29: 3019–3025.
- 184
Schlaug, G.,
L. Jäncke,
Y. Huang,
et al
. 1995. Increased corpus callosum size in musicians.
Neuropsychologia
33: 1047–1055.
- 185
Sluming, V.,
T. Barrick,
M. Howard,
et al
. 2002. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians.
Neuroimage
17: 1613–1622.
- 186
Antić, S.,
I. Galinović,
A. Lovrečić-Huzjan,
et al
. 2008. Music as an auditory stimulus in stroke patients.
Coll. Antropol.
32: 19–23.
- 187
Matteis, M.,
M. Silvestrini,
E. Troisi,
et al
. 1997. Transcranial doppler assessment of cerebral flow velocity during perception and recognition of melodies.
J. Neurol. Sci.
149: 57–61.
- 188
Vollmer-Haase, J.,
K. Finke,
W. Hartje,
et al
. 1998. Hemispheric dominance in the processing of J.S. Bach fugues: a transcranial Doppler sonography (TCD) study with musicians.
Neuropsychologia
36: 857–867.
- 189
Kreisel, S.H.,
H. Bäzner &
M.G. Hennerici. 2006. Pathophysiology of stroke rehabilitation: temporal aspects of neuro-functional recovery.
Cerebrovasc. Dis.
21: 6–17.