Pacemaker Channels
MIRKO BARUSCOTTI
Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Italy
Search for more papers by this authorCorresponding Author
DARIO DIFRANCESCO
Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Italy
INFM-Milan University Unit, 20133 Milan, Italy
Address for correspondence: Prof. Dario DiFrancesco, Ph.D., Dept. of Biomolecular Sciences and Biotechnology, Lab. of Molecular Physiology and Neurobiology, via Celoria 26, 20133 Milano, Italy. Voice: 39-02-5031-4931; fax: 39-02-5031-4932. [email protected]Search for more papers by this authorMIRKO BARUSCOTTI
Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Italy
Search for more papers by this authorCorresponding Author
DARIO DIFRANCESCO
Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Italy
INFM-Milan University Unit, 20133 Milan, Italy
Address for correspondence: Prof. Dario DiFrancesco, Ph.D., Dept. of Biomolecular Sciences and Biotechnology, Lab. of Molecular Physiology and Neurobiology, via Celoria 26, 20133 Milano, Italy. Voice: 39-02-5031-4931; fax: 39-02-5031-4932. [email protected]Search for more papers by this authorAbstract
Abstract: The pacemaker “funny” current (If) has been the object of detailed investigations since its original description in sinoatrial node myocytes in the late 1970s; its role in underlying generation of spontaneous activity and autonomic modulation of cardiac rate has been amply demonstrated. In the late 1990s four isoforms of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular components of native pacemaker channels, were cloned, and structure-function relation studies provided a molecular interpretation of several features of the native channels. Its role in pacemaking makes If a natural target of heart rate modulating agents; several heart rate reducing molecules are known today that exert their action by specific inhibition of f-channels. Experiments aimed at determining the role of If relative to other proposed pacemaker mechanisms such as SR Ca2+ transients confirm that the If-mediated rate control is a key process in pacemaker generation and autonomic control.
REFERENCES
- 1
Noble, D., RW. Tsien
1968. The kinetics and rectifier properties of the slow potassium current in calf Purkinje fibres.
J Physiol
195: 185–214.
- 2
Vassalle, M.
1966. Analysis of cardiac pacemaker potential using a “voltage clamp” technique.
Am J Physiol
210: 1335–1341.
- 3
Brown, H.F., D. DiFrancesco, S.J. Noble
1979. How does adrenaline accelerate the heart
Nature
280: 235–236.
- 4
DiFrancesco, D.
1981. A new interpretation of the pace-maker current in calf Purkinje fibres.
J Physiol
314: 359–376.
- 5
DiFrancesco, D.
1981. A study of the ionic nature of the pace-maker current in calf Purkinje fibres.
J Physiol
314: 377–393.
- 6
DiFrancesco, D.
1993. Pacemaker mechanisms in cardiac tissue.
Ann Rev Physiol
55: 451–467.
- 7
Pape, H.C.
1996. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons.
Ann Rev Physiol
58: 299–327.
- 8
Honjo, H., M.R. Boyett, I. Kodama, et al
1996. Correlation between electrical activitiy and the size of rabbit sinoatrial node cells.
J Physiol
496: 795–808.
- 9
DiFrancesco, D., M. Mangoni
1994. Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node.
J Physiol
474: 473–482.
- 10
van Ginneken, A.C., W. Giles
1991. Voltage-clamp measurements of the hyperpolarization-activated inward current I(f) in single cells from rabbit sino-atrial node.
J Physiol
434: 57–83.
- 11
Hartzell, H.C.
1988. Regulation of cardiac ion channels by catecholamines acetylcholine and second messenger systems.
Prog Biophys Mol Biol
52: 165–247.
- 12
Irisawa, H., H.F. Brown, W. Giles
1993. Cardiac pacemaking in sinoatrial node.
Physiol Rev
73: 197–227.
- 13
DiFrancesco, D., C. Tromba
1988. Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes.
J Physiol
405: 493–510.
- 14
DiFrancesco, D., P. Ducouret, R.B. Robinson
1989. Muscarinic modulation of cardiac rate at low acetylcholine concentrations.
Science
243: 669–671.
- 15
Zaza, A., R.B. Robinson, D. DiFrancesco
1996. Basal response of the L-type Ca2+ and hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node.
J Physiol
491: 347–355.
- 16
DiFrancesco, D., P. Tortora
1991. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.
Nature
351: 145–147.
- 17
DiFrancesco, D., A. Ferroni, M. Mazzanti, et al
1986. Properties of the hyperpolarizing-activated current (If) in cells isolated from the rabbit sino-atrial node.
J Physiol
377: 61–88.
- 18
DiFrancesco, D.
1999. Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node.
J Physiol
515: 367–376.
- 19
Viscomi, C., C. Altomare, A. Bucchi, et al
2001. C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels.
J Biol Chem
276: 29930–29934.
- 20
Wainger, B.J., M. DeGennaro, B. Santoro, et al
2001. Molecular mechanism of cAMP modulation of HCN pacemaker channels.
Nature
411: 805–810.
- 21
Santoro, B., S.G. Grant, D. Bartsch, et al
1997. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels.
Proc Natl Acad Sci USA
94: 14815–14820.
- 22
Gauss, R., R. Seifert, B.U. Kaupp
1998. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm.
Nature
393: 583–587.
- 23
Ludwig, A., X. Zong, M. Jeglitsch, et al
1998. A family of hyperpolarization-activated mammalian cation channels.
Nature
393: 587–591.
- 24
Vaccari, T., A. Moroni, M. Rocchi, et al
1991. The human gene coding for HCN2, a pacemaker channel of the heart.
Biochem Biophys Acta
1446: 419–425.
- 25
Ishii, T.M., M. Takano, L.H. Xie, et al
1999. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node.
J Biol Chem
274: 12835–12839.
- 26
Seifert, R., A. Scholten, R. Gauss, et al
1999. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis.
Proc Natl Acad Sci USA
96: 9391–9396.
- 27
Jan, L.Y., YN. Jan
1997. Cloned potassium channels from eukariotes and prokaryotes.
Ann Rev Neurosci
20: 91–123.
- 28
Mannikko, R., F. Elinder, H.P. Larsson
2002. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages.
Nature
419: 837–841.
- 29
Chen, J., J.S. Mitcheson, M. Tristani-Firouzi, et al
2001. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
Proc Nat Acad Sci USA
98: 11277–11282.
- 30
Shin, K.S., B.S. Rothberg, G. Yellen
2001. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate.
J Gen Physiol
117: 91–101.
- 31
Moroni, A., A. Barbuti, C. Altomare, et al
2000. Kinetic and ionic properties of the human HCN2 pacemaker channel.
Pflugers Arch
439: 618–626.
- 32
Ulens, C., J. Tytgat
2001. Functional heteromerization of HCN1 and HCN2 pacemaker channels.
J Biol Chem
276: 6069–6072.
- 33
Santoro, B., D.T. Liu, H. Yao, et al
1998. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain.
Cell
93: 717–729.
- 34
Ludwig, A., X. Zong, J. Stieber, et al
1999. Two pacemaker channels from human heart with profoundly different activation kinetics.
EMBO J
18: 2323–2329.
- 35
Altomare, C., A. Bucchi, E. Camatini, et al
2001. Integrated allosteric model of voltage gating of HCN channels.
J Gen Physiol
117: 519–532.
- 36
Qu, J., C. Altomare, A. Bucchi, et al
2002. Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells.
Pflugers Arch
444: 597–601.
- 37
Altomare, C., B. Terragni, C. Brioschi, et al
2003. Heteromeric HCN1-4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node.
J Physiol
549: 347–359.
- 38
Barbuti, A., M. Baruscotti, C. Altomare, et al.
1999. Action of internal pronase on the f-channel kinetics in the rabbit SA node.
J. Physiol.
520: 737–744.
- 39
Shi, W., R. Wymore, H. Yu, et al
1999. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues.
Circ Res
85: E1–6.
- 40
Moroni, A., L. Gorza, M. Beltrame, et al
2001. Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current If.
J Biol Chem
276: 29233–29241.
- 41
Moosmang, S., J. Stieber, X. Zong, et al
2001. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues.
Eur J Biochem
268: 1646–1652.
- 42
DiFrancesco, D.
1991. The contribution of the ‘pacemaker’ current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes.
J Physiol
434: 23–40.
- 43
DiFrancesco, D.
1995. Cesium and the pacemaker current.
J Cardiovasc Electrophysiol
6: 1152–1153.
- 44
Bois, P., J. Bescond, B. Renaudon, J. Lenfant
1996. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells.
Brit J Pharmacol
118: 1051–1057.
- 45
Bucchi, A., M. Baruscotti, D. DiFrancesco
2002. Current-dependent block of rabbit sino-atrial node if channels by ivabradine.
J Gen Physiol
120: 1–13.
- 46
Rigg, L., B.M. Heath, Y. Cui, D.A. Terrar
2000. Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node.
Cardiovasc Res
48: 254–264.
- 47
Vinogradova, T.M., K.Y. Bogdanov, E.G. Lakatta
2002. β-Adrenergic stimulation modulates ryanodine receptor Ca2+ release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells.
Circ Res
90: 73–79.
- 48
Bucchi, A., M. Baruscotti, R.B. Robinson, et al
2003. If-dependent modulation of pacemaker rate mediated by cAMP in the presence of ryanodine in rabbit sino-atrial node cells.
J Mol Cell Cardiol
35: 905–913.
- 49
Bois, P., B. Renaudon, M. Baruscotti, et al
1997. Activation of f-channels by cAMP analogs in macro-patches from rabbit SA node myocytes.
J Physiol
501: 565–571.